EBK MANUFACTURING PROCESSES FOR ENGINEE
EBK MANUFACTURING PROCESSES FOR ENGINEE
6th Edition
ISBN: 9780134425115
Author: Schmid
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2, Problem 2.95P

(a)

To determine

Engineering stress and engineering strain.

(a)

Expert Solution
Check Mark

Answer to Problem 2.95P

The value of engineering stress is 233.86 MPa.

Hence the value of engineering strain is 0.96.

Explanation of Solution

Given data:

  Tensile force applied at the end of solid bar, F=9kN,Initial diamter of solid bar, di=7mm,Final diameter of solid bar, do=5mm.

The engineering stress and engineering strain.

A tensile load is applied to a solid bar. The bar deforms uniformly and the volume remains constant.

Calculating the initial area of the solid bar,

  Ai=π4D2Ai=π4(7)2Ai=38.484mm2

Calculating the final area of the solid bar,

  Ao=π4do2Ao=π4(5)2Ao=19.635mm2

  Volume remains constant,V=AiLi=AoLoAoLo=AiLiLoLi=AiAoLoLi1=AiAo1LoLiLi=AiAoAoΔLLi=di2do2do2..........(1)

Writing the formula for engineering stress,

  Engineering stress, σ=Applied ForceOriginal Areaσ=9×100038.484×106σ=233.86MPa

  The value of engineering stress is 233.86 MPa.

Writing the formula for engineering strain,

  Engineering strain, ε=Change in lengthOriginal lengthε=ΔLLiFrom equation (1),ΔLLi=di2do2do2ε=ΔLLi=di2do2do2ε=725252ε=0.96

Hence the value of engineering strain is 0.96.

(b)

To determine

True stress and true strain

(b)

Expert Solution
Check Mark

Answer to Problem 2.95P

  The value of true stress is 458 MPa.

The value of true strain is 0.673.

Explanation of Solution

Writing the formula for true stress,

  True stress, σt=σ(1+engineeringstrain)σt=σ(1+ε)σt=233.86(1+0.6)σt=374.176MPa.

  The value of true stress is 458 MPa.

Writing the formula for true strain,

  True strain, εt=ln(1+engineeringstrain)εt=ln(1+ε)εt=ln(1+0.96)εt=0.673

Hence, the value of true strain is 0.673.

(c)

To determine

The engineering stress and engineering strain when the true stress is 345 MPa.

(c)

Expert Solution
Check Mark

Answer to Problem 2.95P

The value of engineering stress is 220.8MPa

The value of engineering strain is 0.5625.

Explanation of Solution

Now if the given condition is −

  True stress, σt=345MPa,Final diamter, do=5.6mm

The final area can be given as,

  Ao=π4do2Ao=π4(5.6)2Ao=24.63mm2

From the true stress formula,

  σt=σ(1+ε)σt=σ(AiAo)σt=σ(di2Ao2)345=σ(725.62)σ=220.8MPa.

Hence the value of engineering stress is 220.8MPa

From equation (1),

  ΔLLi=di2do2do2And engineering strain is also given as,ε=ΔLLi=di2do2do2ε=di2do2do2ε=725.625.62ε=0.5625

Hence the value of engineering strain is 0.5625.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
CORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. I REALLY NEED FBD. The cantilevered spandrel beam shown whose depth tapers from d1 to d2, has a constant width of 120mm. It carries a triangularly distributed end reaction.Given: d1 = 600 mm, d2 = 120 mm, L = 1 m, w = 100 kN/m1. Calculate the maximum flexural stress at the support, in kN-m.2. Determine the distance (m), from the free end, of the section with maximum flexural stress.3. Determine the maximum flexural stress in the beam, in MPa.ANSWERS: (1) 4.630 MPa; (2) 905.8688 m; (3) 4.65 MPa
CORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. I REALLY NEED FBD A concrete wall retains water as shown. Assume that the wall is fixed at the base. Given: H = 3 m, t = 0.5m, Concrete unit weight = 23 kN/m3Unit weight of water = 9.81 kN/m3(Hint: The pressure of water is linearly increasing from the surface to the bottom with intensity 9.81d.)1. Find the maximum compressive stress (MPa) at the base of the wall if the water reaches the top.2. If the maximum compressive stress at the base of the wall is not to exceed 0.40 MPa, what is the maximum allowable depth(m) of the water?3. If the tensile stress at the base is zero, what is the maximum allowable depth (m) of the water?ANSWERS: (1) 1.13 MPa, (2) 2.0 m, (3) 1.20 m
CORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. I NEED FBD A short plate is attached to the center of the shaft as shown. The bottom of the shaft is fixed to the ground.Given: a = 75 mm, h = 125 mm, D = 38 mmP1 = 24 kN, P2 = 28 kN1. Calculate the maximum torsional stress in the shaft, in MPa.2. Calculate the maximum flexural stress in the shaft, in MPa.3. Calculate the maximum horizontal shear stress in the shaft, in MPa.ANSWERS: (1) 167.07 MPa; (2) 679.77 MPa; (3) 28.22 MPa

Chapter 2 Solutions

EBK MANUFACTURING PROCESSES FOR ENGINEE

Ch. 2 - Prob. 2.11QCh. 2 - Prob. 2.12QCh. 2 - Prob. 2.13QCh. 2 - Prob. 2.14QCh. 2 - Prob. 2.15QCh. 2 - Prob. 2.16QCh. 2 - Prob. 2.17QCh. 2 - Prob. 2.18QCh. 2 - Prob. 2.19QCh. 2 - Prob. 2.20QCh. 2 - Prob. 2.21QCh. 2 - Prob. 2.22QCh. 2 - Prob. 2.23QCh. 2 - Prob. 2.24QCh. 2 - Prob. 2.25QCh. 2 - Prob. 2.26QCh. 2 - Prob. 2.27QCh. 2 - Prob. 2.28QCh. 2 - Prob. 2.29QCh. 2 - Prob. 2.30QCh. 2 - Prob. 2.31QCh. 2 - Prob. 2.32QCh. 2 - Prob. 2.33QCh. 2 - Prob. 2.34QCh. 2 - Prob. 2.35QCh. 2 - Prob. 2.36QCh. 2 - Prob. 2.37QCh. 2 - Prob. 2.38QCh. 2 - Prob. 2.39QCh. 2 - Prob. 2.40QCh. 2 - Prob. 2.41QCh. 2 - Prob. 2.42QCh. 2 - Prob. 2.43QCh. 2 - Prob. 2.44QCh. 2 - Prob. 2.45QCh. 2 - Prob. 2.46QCh. 2 - Prob. 2.47QCh. 2 - Prob. 2.48QCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - Prob. 2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. 2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. 2.92PCh. 2 - Prob. 2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. 2.99PCh. 2 - Prob. 2.100PCh. 2 - Prob. 2.101P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY