EBK MANUFACTURING PROCESSES FOR ENGINEE
6th Edition
ISBN: 9780134425115
Author: Schmid
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.86P
To determine
The change in volume of using the von-Mises criterion and when the material changes to copper .
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. The tires of an agricultural tractor shown below are assumed to be 25 cm wide for the
front tires and 40 cm at the rear tires. Ground contact of each tire is 15 cm. Calculate the
compressive stress between each tire and the ground surface.
Weight = 2,500 kg
15 cm
1.3m
Point A
2.2 m
2R
2F
The bar shown in diagram is subjected to a tensile load of 150 kN. If the stress in the
middle portion is limited to 160 N/mm2, determine the diameter of the middle portion. Find
also the length of the middle portion if the total elongation of the bar is to be 0.25 cm.
Young's modulus is given as equal to 2.0 × 105 N/mm2.
150 KN
➜
10 cm DIA
45 cm
10 cm DIA
150 KN
If the cross sectional area of bar BD is 0.5 in2, what is the stress in bar BD?
300 lb/ft
2 ft 2 f1
30°
6 ft-
D.
Chapter 2 Solutions
EBK MANUFACTURING PROCESSES FOR ENGINEE
Ch. 2 - Prob. 2.1QCh. 2 - Prob. 2.2QCh. 2 - Prob. 2.3QCh. 2 - Prob. 2.4QCh. 2 - Prob. 2.5QCh. 2 - Prob. 2.6QCh. 2 - Prob. 2.7QCh. 2 - Prob. 2.8QCh. 2 - Prob. 2.9QCh. 2 - Prob. 2.10Q
Ch. 2 - Prob. 2.11QCh. 2 - Prob. 2.12QCh. 2 - Prob. 2.13QCh. 2 - Prob. 2.14QCh. 2 - Prob. 2.15QCh. 2 - Prob. 2.16QCh. 2 - Prob. 2.17QCh. 2 - Prob. 2.18QCh. 2 - Prob. 2.19QCh. 2 - Prob. 2.20QCh. 2 - Prob. 2.21QCh. 2 - Prob. 2.22QCh. 2 - Prob. 2.23QCh. 2 - Prob. 2.24QCh. 2 - Prob. 2.25QCh. 2 - Prob. 2.26QCh. 2 - Prob. 2.27QCh. 2 - Prob. 2.28QCh. 2 - Prob. 2.29QCh. 2 - Prob. 2.30QCh. 2 - Prob. 2.31QCh. 2 - Prob. 2.32QCh. 2 - Prob. 2.33QCh. 2 - Prob. 2.34QCh. 2 - Prob. 2.35QCh. 2 - Prob. 2.36QCh. 2 - Prob. 2.37QCh. 2 - Prob. 2.38QCh. 2 - Prob. 2.39QCh. 2 - Prob. 2.40QCh. 2 - Prob. 2.41QCh. 2 - Prob. 2.42QCh. 2 - Prob. 2.43QCh. 2 - Prob. 2.44QCh. 2 - Prob. 2.45QCh. 2 - Prob. 2.46QCh. 2 - Prob. 2.47QCh. 2 - Prob. 2.48QCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - Prob. 2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. 2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. 2.92PCh. 2 - Prob. 2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. 2.99PCh. 2 - Prob. 2.100PCh. 2 - Prob. 2.101P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A cylinder filled with oil is under pressure from a piston, as shown in the figure. The diameter d of the piston is 1,80 in. and the compressive force F is 3500 lb. The maximum allowable shear stress t^^, in the wall of the cylinder is 5500 psi. What is the minimum permissible thickness t„± of the cylinder wall? (Sec figurearrow_forward-27 A square plate with side dimension of 2 in. is subjected to compressive stress a and tensile stress The stresses on element A oriented at angle ?? x1=45° aresy1= 75 psi. tx1y1= 275 psi. . Find the state of stress on the element lilt is rotated clockwise to align the x3 axis with the horizontal x axis.arrow_forwardAt a point on the surface of an elliptical exercise machine, the material is in biaxial stress with t = 1400 psi and trv = —900 psi, as shown in the figure part a. The figure part b shows an inclined plane aa cut through the same point in the material but oriented at an angle ft Determine the value of the angle 6 between zero and 90° such that no normal stress acts on plane aa. Sketch a stress clement having plane aa as one of its sides and show all stresses acting on the clementarrow_forward
- -26 A rectangular plate of dimensions 125 mm × 75 mm is subjected to tensile stress sy= 67 kPa and compressive stress a. If it is known that the normal stress along the diagonal t—t is ??t= -6.57 kPa, find stress ??y on element A. aarrow_forwardA solid spherical ball of magnesium alloy (E = 6.5 × l0-6 psi, v = 0.35) is lowered into the ocean to a depth of 8000 ft. The diameter of the ball is 9.0 in. (a) Determine the decrease ?d in diameter, the decrease, ?V in volume, and the strain energy U of the ball. (b) At what depth will the volume change be equal to 0.0324% of the original volume?arrow_forward- 7.2-26 The strains on the surface of an experiment al device made of pure aluminum (E = 70 GPa. v = 0.33) and tested in a space shuttle were measured by means of strain gages. The gages were oriented as shown in the figure. and the measured strains were = 1100 X 106, h = 1496 X 10.6, and = 39.44 X l0_. What is the stress o in the x direction?arrow_forward
- An element in plane stress on the fuselage of an airplane (figure part a) is subjected to compressive stresses with a magnitude of 42 MPa in the horizontal direction and tensile stresses with a magnitude of 9.5 MPa in the vertical direction (sec figure part b). Also, shear stresses with a magnitude of 15.5 MPa act in the directions shown. Determine the stresses acting on an element oriented at a clockwise angle of 40g from the horizontal. Show these stresses on a sketch of an element oriented at this angle.arrow_forwardThe bronze bar 3.42 m long with a cross-sectional area of 627 mm2 is placed between two rigid walls. At a temperature of -14 °C, there is a gap Δ = 2.36 mm, as shown in the figure. Find the temperature at which the compressive stress in the bar will be 34.22 MPa. Use α = 18 × 10-6 /°C and E = 80.32 GPa. Round off your answer to two decimal places.arrow_forwardThe bronze bar 2.7 m long with a cross-sectional area of 415 mm2 is placed between two rigid walls. At a temperature of 8.1 °C, there is a gap Δ = 2.32 mm, as shown in the figure. Find the compressive force (in N) experienced by the bar at a temperature of 68.66 °C. Use α = 18 × 10-6 /°C and E = 80.71 GPa. Round off your answer to three decimal places.arrow_forward
- Calculate the combined stress (MPa) on the rod shown below using the principle stress method. Here, F1 = 0.35 kN, F2 = 0.12 kN, T = 428000 N-mm. Length and diameter of the rod are 75 cm and 75 mm, respectively. F2 F1 darrow_forwardQ2 A rod is 3m long at a temperature of 15°C. Find the expansion of the rod, when the temperature is raised to 95°C. If this expansion is prevented, find the stress induced in the material of the rod. Take E=1x105 N/mm2 and α=0.000012/°C.arrow_forwardThe bronze bar 2.72 m long with a cross-sectional area of 496 mm2 is placed between two rigid walls. At a temperature of 8.61 °C, there is a gap Δ = 2.28 mm, as shown in the figure. Find the compressive force (in N) experienced by the bar at a temperature of 61.85 °C. Use α = 18 × 10-6 /°C and E = 80.84 GPa. Round off your answer to three decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Pressure Vessels Introduction; Author: Engineering and Design Solutions;https://www.youtube.com/watch?v=Z1J97IpFc2k;License: Standard youtube license