EBK MANUFACTURING PROCESSES FOR ENGINEE
6th Edition
ISBN: 9780134425115
Author: Schmid
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.37Q
To determine
The effect of increase in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A material has the following properties, ultimate Sul = σul = 350mpa, the strain hardening exponent n=0.20. Determine the value for the strength coefficient K.
In the attached picture there is a sketch of a socket wrench. Assume the wrench is held at a fixed point “A”. The yield stress of the material is known to be 500 MPa. Answer the questions below
Describe the stresses at point “A” and their causes and calculate the stresses.
Determine the factor of safety against yield assuming the Tresca yield criteria.
Determine the factor of safety against yield assuming the von Mises yield criteria using both principal stresses and “Cartesian” stresses. Do your values match or not, and is this expected? Explain.
Do the calculated values make sense with the respect to the Tresca value? Explain, why or why not?
A circular rod of length 18 cm and diameter 5 mm is made of grade 1045 grade steel.
a. Calculate the stress and strain in the rod, and its extension, when it is subjected to 7 kN of tension.
(Express your answers using three significant figures.)
|MPa
E =
x10-4
(Express your answer using whole numbers.)
AL =
| pm
b. At what force would the rod begin to yield?
(Express your answer using three significant figures.)
F =
|kN
c. By what amount would the rod have to be stretched beyond its original length in order to yield?
(Express your answer using whole numbers.)
AL =
um
Chapter 2 Solutions
EBK MANUFACTURING PROCESSES FOR ENGINEE
Ch. 2 - Prob. 2.1QCh. 2 - Prob. 2.2QCh. 2 - Prob. 2.3QCh. 2 - Prob. 2.4QCh. 2 - Prob. 2.5QCh. 2 - Prob. 2.6QCh. 2 - Prob. 2.7QCh. 2 - Prob. 2.8QCh. 2 - Prob. 2.9QCh. 2 - Prob. 2.10Q
Ch. 2 - Prob. 2.11QCh. 2 - Prob. 2.12QCh. 2 - Prob. 2.13QCh. 2 - Prob. 2.14QCh. 2 - Prob. 2.15QCh. 2 - Prob. 2.16QCh. 2 - Prob. 2.17QCh. 2 - Prob. 2.18QCh. 2 - Prob. 2.19QCh. 2 - Prob. 2.20QCh. 2 - Prob. 2.21QCh. 2 - Prob. 2.22QCh. 2 - Prob. 2.23QCh. 2 - Prob. 2.24QCh. 2 - Prob. 2.25QCh. 2 - Prob. 2.26QCh. 2 - Prob. 2.27QCh. 2 - Prob. 2.28QCh. 2 - Prob. 2.29QCh. 2 - Prob. 2.30QCh. 2 - Prob. 2.31QCh. 2 - Prob. 2.32QCh. 2 - Prob. 2.33QCh. 2 - Prob. 2.34QCh. 2 - Prob. 2.35QCh. 2 - Prob. 2.36QCh. 2 - Prob. 2.37QCh. 2 - Prob. 2.38QCh. 2 - Prob. 2.39QCh. 2 - Prob. 2.40QCh. 2 - Prob. 2.41QCh. 2 - Prob. 2.42QCh. 2 - Prob. 2.43QCh. 2 - Prob. 2.44QCh. 2 - Prob. 2.45QCh. 2 - Prob. 2.46QCh. 2 - Prob. 2.47QCh. 2 - Prob. 2.48QCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - Prob. 2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. 2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. 2.92PCh. 2 - Prob. 2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. 2.99PCh. 2 - Prob. 2.100PCh. 2 - Prob. 2.101P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. A part made of Aluminum 6061-T6 has a yield strength = 400 MPa. For each stress state below, draw all 3 Mohr's circles, find the principal stresses, and calculate the safety factor against yield using both the distortion-energy (von Mises) and maximum shear stress (Tresca) criterions. (If relevant) A clearly labeled diagram (or diagrams) clearly pertaining to your analysis with a coordinate system and relevant labels. Final answer with appropriate units and significant figures. You can use the fprintf() command in MATLAB to format numerical results A 2-3 sentence reflection on your answer. Does it make sense? Why or why not? What are some implications?arrow_forwardPlease help with this question in detail. I need every single step of the process. Thanks!arrow_forward(Suppose you need to design a tension test machine capable of testing specimens that have nominal ultimate stresses as high as σu = 100 ksi . How much force must the machine be capable of generating? Assume the testing specimen has the ASTM shape shown. Answer for this is 19.6 kip) (If the maximum nominal strain is ϵf = 0.7 just before the test specimen fractures and the test machine operates by moving only one grip, how far must that grip be designed to travel? The total length of the deforming part of the specimen is 3 in. Answer for this is 2.10 in) Do not know if this info is needed but this was the other 2 partsarrow_forward
- A bar of 4340 steel has an Sy = 50 ksi. Which of these statements is true: If Sy = 50 ksi, than the normal stress in the bar is always 50 ksi. If a normal stress of 40 ksi is applied to the bar, it will undergo plastic deformation. The Sy = 50 ksi indicates bar is behaving in a brittle manner. O Any normal stress above 50 ksi will cause plastic deformation in the bar.arrow_forward4. The maximum stress a human tendon can withstand is estimated to be 1200 MPa. If you were to test it for rupture what load cell you should use (25ON or 5kN) what problems may occur if you select an incorrect load cell. 5. The figure below is a J-shaped (or concave upward) stress-strain curve. What does a J-shaped stress stain curve indicate about a material's response to stress and tendency to yield? Name two materials that have J-shaped stress strain curves.arrow_forwardExample: Convert the change in length data in Table 3-2 to engineering stress and strain and plot a stress-strain curve Homework- help Table 3-2 The results of a tensile test of a 0.505 in. diameter aluminum alloy test bar, initial length (1o) = 2 in. Calculated LTO Load (Ib) Change in Length (in.) Stress (psi) Strain (in./in.) 0.000 1000 0.001 0.0005 4,993 14,978 24,963 34,948 37,445 39,442 39,941 39,691 37,944 3000 0.003 0.0015 5000 0.005 0.0025 7000 0.007 0.0035 7500 0.030 0.0150 7900 0.080 0.0400 8000 (maximum load) 0.120 0.0600 7950 0.160 0.0800 7600 (fracture) 0.205 0.1025arrow_forward
- Assume the following elastic loading exists on ablock of copper:σX = 325 MPa; σY = 80 MPa; and τXY = 40 MPaCalculate eX and eZ for this block, assuminga. that it is a random polycrystalline material.b. that it is a single crystal with the tensile and shearaxes lining up along unit cell axes.c. Explain why the relative strain values you calculated along the X axis make sense for the two cases,based on the elastic anisotropy of copper.arrow_forwardIf the engineering strain in a tensile bar is 0.0025 and Poisson’s ratio is 0.33, find the original length and the original diameter if the length and diameter under load are 2.333 ft. and 1.005 in. respectively.arrow_forwardPlease calculate each material individually Steel 4340 Maraging Steel A1 7075arrow_forward
- Question 4 At a point in a thin steel plate in plane stress (oz = Txz = Tyz = 0), Ex=800H, Ey= - 400, and Ky = 200. For the steel plate, G = 76.92 GPa and V= 0.30. (a) Determine the extensional strain &zat this point. (b) Determine the stresses Ox, Oy and Txy at this point. (c) Determine the change in volume or dilatation, &v, at this point.arrow_forward100 mm must elongate only 5 mm when a tensle load of 100,000 N is applied. Under these A cylindrical specimen of a brass alloy having a circumstances what must be the radius of the specimen? Consider this brass alloy to have the stress-strain behavior shown in Figure below. Tensile strengh 450 MPa (65,000 p A00 10 pu 300 200- 30 Yield strength 250 MPa (36,000 psi 2아 100 1아 100 0.005 0.20 0.30 0.40arrow_forwardNote that : σ2= 14 σ1=30arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Stress Transformation and Mohr's Circle; Author: The Efficient Engineer;https://www.youtube.com/watch?v=_DH3546mSCM;License: Standard youtube license