ACHIEVE:INTRO TO GENETIC ANALYSIS 1TERM
12th Edition
ISBN: 9781319401399
Author: Griffiths
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 14P
Summary Introduction
To determine: The
Introduction: The SRY gene codes for a “sex-determining region Y protein,” which is responsible for sexual development in males. The gene is found on the Y chromosome and is also known as the sex-determining gene.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The picture below represents a G1 cell from a newly discovered species that uses the X/Y sex determination system. Alleles for the different autosomal genes of interest are indicated on the chromosomes, and genes R and T are 16 cM apart. Red lines show maternal chromosomes, and blue lines show paternal chromosomes. Answer the following questions about this individual.d) Provide the genotype of the fertilizing male gamete that produced this individual.
e) This individual can produce a pool of different gametes. List any TWO potential gametes that will occur at different frequencies. Give the alleles of each gamete contained within a set of brackets, and indicate the expected frequency (up to two decimals) at which that gamete would occur.
Butterflies have an X-Y sex-determination system that is different from that of flies or humans. Female butterflies may be either XY or X0, while butterflies with two or more X chromosomes are males. This photograph shows a tiger swallowtail gynandromorph, which is half male (left side) and half female (right side). Given that the first division of the zygote divides the embryo into the future right and left halves of the butterfly, propose a hypothesis that explains how nondisjunction during the first mitosis might have produced this unusual-looking butterfly.
Question is also in the picture.
The Xg cell-surface antigen is coded for by a gene located on the X chromosome. No equivalent gene exists on the Y chromosome. Two codominant alleles of this gene have been identified: Xg1 and Xg2. A woman of genotype Xg2/Xg2 bears children with a man of genotype Xg1/Y, and they produce a son with Klinefelter syndrome of genotype Xg1/Xg2Y. Using proper genetic terminology, briefly explain how this individual was generated. In which parent and in which meiotic division did the mistake occur?
Chapter 2 Solutions
ACHIEVE:INTRO TO GENETIC ANALYSIS 1TERM
Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prob. 9PCh. 2 - Prob. 10P
Ch. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 56.1PCh. 2 - Prob. 56.2PCh. 2 - Prob. 56.3PCh. 2 - Prob. 56.4PCh. 2 - Prob. 56.5PCh. 2 - Prob. 56.6PCh. 2 - Prob. 56.7PCh. 2 - Prob. 56.8PCh. 2 - Prob. 56.9PCh. 2 - Prob. 56.10PCh. 2 - Prob. 56.11PCh. 2 - Prob. 56.12PCh. 2 - Prob. 56.13PCh. 2 - Prob. 56.14PCh. 2 - Prob. 56.15PCh. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Prob. 60PCh. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65PCh. 2 - Prob. 67PCh. 2 - Prob. 68PCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - Prob. 71PCh. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Prob. 76PCh. 2 - Prob. 77PCh. 2 - Prob. 78PCh. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - Prob. 81PCh. 2 - Prob. 82PCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Prob. 85PCh. 2 - Prob. 86PCh. 2 - Prob. 87PCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - Prob. 90PCh. 2 - Prob. 91PCh. 2 - Prob. 1GSCh. 2 - Prob. 2GSCh. 2 - Prob. 3GS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- Human sex chromosomes are XX for females and XY for males. a. With respect to an X-linked gene, how many different types of gametes can a male produce? b. If a female is homozygous for an X-linked allele, how many different types of gametes can she produce with respect to this allele? c. If a female is heterozygous for an X-linked allele, how many different types of gametes can she produce with respect to this allele?arrow_forwardWhy does a single X chromosome cause infertility and other abnormalities in Turner Syndrome subjects?arrow_forwardIn corn, male sterility is controlled by maternal cytoplasmic elements. This phenotype renders the male part of corn plants (i.e. the tassel) unable to produce fertile pollen; the female parts, however, remain receptive to pollination by pollen from male-fertile corn plants. However, the presence of a nuclear fertility restorer gene F restores fertility to male-sterile lines. Using the following color-coded circles, simulate the crosses indicated below. Put the illustrations of crosses in the spaces provided. Be sure to include in the labels the genotypes and phenotypes of the offspring in each cross. Big light green circle - male-sterile cytoplasm Big orange circle - male-fertile cytoplasm Small orange circle - FF nucleus Small half-light green-half-orange circle - Ff nucleus Small light-green circle - ff nucleusarrow_forward
- Using Figure 17-37, calculate what percentage of conceptions are triploid. The same figure shows XO in the spontaneous-abortion category; however, we know that manyXO individuals are viable. In which of the viable categories would XO be grouped?arrow_forwardDraw a Punnett square for the dihybrid cross described below (it is the same story as given for question 8, above) and use it to fill in the blanks correctly in the text that follows. NOTE: Please type in whole numbers, no symbols. There are two known alleles of gene occupying a specific locus in the X chromosome. The gene in question codes for a transcription factor involved in digit development. The mutant allele is dominant and gives rise to an additional but non-functioning little finger (polydactyly) on both hands. A couple have had their DNA sequenced at the region of interest, the male exhibits polydactyly because of the mutation, the female is homozygous wild type at the same locus and therefore has the wild type phenotype. Both have green eyes. In this story; eye colour shows a monogenic autosomal inheritance pattern and the allele for brown eyes shows incomplete dominance with that for blue eyes, the heterozygote phenotype is green eyes. The genes for eye colour and…arrow_forwardThe answer is "D" but can you explain in a short summary why D is the answer pleasearrow_forward
- Please answer question (a) (b) and (e)arrow_forwardIn corn, male sterility is controlled by maternal cytoplasmic elements. This phenotype renders the male part of the corn plants (i.e the tassel) unable to produce fertile pollen; the female parts, however, remain receptive to pollination by pollen from male fertile corn plants. However, the presence of a nuclear fertility restorer gene F restores fertility to male sterile lines Using the cardboard chips, simulate the crosses indicated below. Give the genotypes and phenotypes of the offsprings in each cross, and properly label the nucleus and the cytoplasm of each individual in the cross Legend male sterile cytoplasm Male fertile cytoplasm FF nucleus Ff nucleus ff nucleus A. Male sterile female x FF male Explain the phenotype of the offspring B. Male sterile female x Ff male Explain the phenotype of the offspringarrow_forwardA scientist working with Drosophila flies studies wing length, an X-linked characteristic. He has pure-breeding lines of short-winged and long-winged flies available. He decides to use reciprocal crosses for his work.i) What are reciprocal crosses? ii) Provide an example of the reciprocal crosses this scientist will do.iii) If the gene for wing length was sex-linked, but present in the pseudoautosomal region, what would you expect the outcome of a reciprocal cross to be with regards to males and females?arrow_forward
- The picture below represents a G1 cell from a newly discovered species that uses the X/Y sex determination system. Alleles for the different autosomal genes of interest are indicated on the chromosomes, and genes R and T are 36 cM apart. Red lines show maternal chromosomes, and blue lines show paternal chromosomes. Answer the following questions about this individual. a) This individual can produce a pool of different gametes. List any TWO potential gametes that will occur at different frequencies. Give the alleles of each gamete contained within a set of brackets, and indicate the expected frequency (up to two decimals) at which that gamete would occur. b) Name any two loci in this individual that can result in recombination in the gametes via the process of independent assortment. c) What is the sex of this individual? Justify your answer. d) Give the term that will describe the morphology of the chromosome that carries the R/T alleles. e) Provide the genotype of the fertilizing male…arrow_forwardMales of many diploid species (like us) have X and Y sex chromosomes. They are hemizygous for most X- linked genes. Thus, males express most X-linked alleles, whether they are dominant or recessive in females. In the fruit fly Drosophila, it is common to achieve the equivalent of a test cross of X-linked genes in females by assessing the readily observed phenotypes of their male progeny. Since males do not receive X-linked genes from their father, sires of these crosses can be normal or wild-type flies. In fly genetics, it is conventional to name a gene after the mutant phenotype that enabled its discovery. Your challenge is to establish gene order and map distances between three X-linked genes in Drosophila. Each gene is represented by recessive mutant alleles that express rather distinctive phenotypes relative to their dominant wild-type alternative alleles. Flies expressing fruitless (f) are bisexual, lush (1) have a heightened responses to ethanol, and ken&barbie (kb) lack external…arrow_forwardWhich crosses represent recombination in male gamete formation and which crosses represent recombination in female gamete formation?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
Human Biology (MindTap Course List)
Biology
ISBN:9781305112100
Author:Cecie Starr, Beverly McMillan
Publisher:Cengage Learning
Mitochondrial mutations; Author: Useful Genetics;https://www.youtube.com/watch?v=GvgXe-3RJeU;License: CC-BY