General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN: 9781305580343
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 18.102QP
Interpretation Introduction
Interpretation:
ATP is a biological source of energy meaning of this term has to be given.
To give: The meaning of the term ‘ATP is a biological source of energy’
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which statement BEST describes why proteins are metabolized when calories are severely
reduced?
Actually, fats are metabolized during a starvation diet, not proteins.
Proteins contain amino acids, which fuel the brain.
Glycogen is a type of protein.
There is a metabolic pathway in which glucose can be made from protein.
The primary use of ingested proteins in the body is to _____.
be broken down into amino acids that are used to build proteins and nucleic acids within the body
be broken down to release energy and the unused components are recycled to build new proteins within the body
interact with signaling molecules to trigger the building of muscle fibers
be converted to starches or sugars, which are more readily accessible forms of energy
Glycerol kinase catalyzes the phosphorylation of glycerol from ATP, yielding glycerol-3-phosphate and ADP. The standard state free energy for hydrolysis of glycerol-3-
phosphate is -9.20 kj/mol and for the hydrolysis of ATP is-30.5 kJ/mol.
Calculate the standard-state free energy change and equilibrium constant for the glycerol kinase reaction at 37 *C.
AG
kj/mol
Keq
Submit Answer
Try Another Version
10 item attempts remaining
Chapter 18 Solutions
General Chemistry - Standalone book (MindTap Course List)
Ch. 18.2 - You have a sample of 1.0 mg of solid iodine at...Ch. 18.2 - Liquid ethanol, C2H5OH(l), at 25C has an entropy...Ch. 18.3 - Prob. 18.2ECh. 18.3 - Prob. 18.3ECh. 18.4 - Calculate G for the following reaction at 25C. Use...Ch. 18.4 - Prob. 18.5ECh. 18.4 - Prob. 18.6ECh. 18.4 - Prob. 18.2CCCh. 18.6 - Give the expression for K for each of the...Ch. 18.6 - Use the data from Table 18.2 to obtain the...
Ch. 18.6 - Prob. 18.9ECh. 18.6 - Prob. 18.3CCCh. 18.7 - Consider the decomposition of dinitrogen...Ch. 18.7 - The thermodynamic equilibrium constant for the...Ch. 18.7 - To what temperature must magnesium carbonate be...Ch. 18 - What is a spontaneous process? Give three examples...Ch. 18 - Which contains greater entropy, a quantity of...Ch. 18 - State the second law of thermodynamics.Ch. 18 - The entropy change S for a phase transition equals...Ch. 18 - Describe how the standard entropy of hydrogen gas...Ch. 18 - Describe what you would look for in a reaction...Ch. 18 - Define the free energy G. How is G related to H...Ch. 18 - What is meant by the standard free-energy change G...Ch. 18 - Prob. 18.9QPCh. 18 - Prob. 18.10QPCh. 18 - Prob. 18.11QPCh. 18 - Prob. 18.12QPCh. 18 - Prob. 18.13QPCh. 18 - Prob. 18.14QPCh. 18 - Prob. 18.15QPCh. 18 - Prob. 18.16QPCh. 18 - Prob. 18.17QPCh. 18 - You run a reaction that has a negative entropy...Ch. 18 - Prob. 18.19QPCh. 18 - Given the following information at 25C, calculate...Ch. 18 - Prob. 18.21QPCh. 18 - Prob. 18.22QPCh. 18 - For each of the following statements, indicate...Ch. 18 - Which of the following are spontaneous processes?...Ch. 18 - Prob. 18.25QPCh. 18 - Predict the sign of the entropy change for each of...Ch. 18 - Hypothetical elements A(g) and B(g) are introduced...Ch. 18 - Prob. 18.28QPCh. 18 - Prob. 18.29QPCh. 18 - Describe how you would expect the spontaneity (G)...Ch. 18 - Chloroform, CHCl3, is a solvent and has been used...Ch. 18 - Diethyl ether (known simply as ether), (C2H5)2O,...Ch. 18 - The enthalpy change when liquid methanol. CH3OH,...Ch. 18 - The heat of vaporization of carbon disulfide, CS2,...Ch. 18 - Predict the sign of S, if possible, for each of...Ch. 18 - Predict the sign of S, if possible, for each of...Ch. 18 - Calculate S for the following reactions, using...Ch. 18 - Calculate S for the following reactions, using...Ch. 18 - Calculate S for the reaction...Ch. 18 - What is the change in entropy, S, for the reaction...Ch. 18 - Using enthalpies of formation (Appendix C),...Ch. 18 - Using enthalpies of formation (Appendix C),...Ch. 18 - The free energy of formation of one mole of...Ch. 18 - The free energy of formation of one mole of...Ch. 18 - Calculate the standard free energy of the...Ch. 18 - Calculate the standard free energy of the...Ch. 18 - On the basis of G for each of the following...Ch. 18 - For each of the following reactions, state whether...Ch. 18 - Calculate H and G for the following reactions at...Ch. 18 - Calculate H and G for the following reactions at...Ch. 18 - Consider the reaction of 2 mol H2(g) at 25C and 1...Ch. 18 - Consider the reaction of 1 mol H2(g) at 25C and 1...Ch. 18 - What is the maximum work that could be obtained...Ch. 18 - What is the maximum work that could be obtained...Ch. 18 - Give the expression for the thermodynamic...Ch. 18 - Write the expression for the thermodynamic...Ch. 18 - What is the standard free-energy change G at 25C...Ch. 18 - What is the standard free-energy change G at 25C...Ch. 18 - Calculate the standard free-energy change and the...Ch. 18 - Calculate the standard free-energy change and the...Ch. 18 - Obtain the equilibrium constant Kc at 25C from the...Ch. 18 - Calculate the equilibrium constant Kc at 25C from...Ch. 18 - Use data given in Tables 6.2 and 18.1 to obtain...Ch. 18 - Use data given in Tables 6.2 and 18.1 to obtain...Ch. 18 - Sodium carbonate, Na2CO3, can be prepared by...Ch. 18 - Oxygen was first prepared by heating mercury(II)...Ch. 18 - Prob. 18.67QPCh. 18 - The combustion of acetylene, C2H2, is a...Ch. 18 - Prob. 18.69QPCh. 18 - Prob. 18.70QPCh. 18 - Acetic acid, CH3COOH, freezes at 16.6C. The heat...Ch. 18 - Acetone, CH3COCH3, boils at 56C. The heat of...Ch. 18 - Prob. 18.73QPCh. 18 - Prob. 18.74QPCh. 18 - Prob. 18.75QPCh. 18 - Ethanol burns in air or oxygen according to the...Ch. 18 - Acetic acid in vinegar results from the bacterial...Ch. 18 - Prob. 18.78QPCh. 18 - Is the following reaction spontaneous as written?...Ch. 18 - Is the following reaction spontaneous as written?...Ch. 18 - Prob. 18.81QPCh. 18 - The reaction N2(g)+3H2(g)2NH3(g) is spontaneous at...Ch. 18 - Prob. 18.83QPCh. 18 - Calculate G at 25C for the reaction...Ch. 18 - Prob. 18.85QPCh. 18 - Consider the reaction CS2(g)+4H2(g)CH4(g)+2H2S(g)...Ch. 18 - Prob. 18.87QPCh. 18 - a From a consideration of the following reactions,...Ch. 18 - For the reaction CH3OH(l)+32O2(g)2H2O(l)+CO2(g)...Ch. 18 - Prob. 18.90QPCh. 18 - Prob. 18.91QPCh. 18 - Tungsten is usually produced by the reduction of...Ch. 18 - For the decomposition of formic acid,...Ch. 18 - Prob. 18.94QPCh. 18 - For the reaction 2Cu(s)+S(s)Cu2S(s) H and G are...Ch. 18 - Prob. 18.96QPCh. 18 - When 1.000 g of gaseous butane, C4H10, is burned...Ch. 18 - When 1.000 g of ethylene glycol, C2H6O2, is burned...Ch. 18 - a Calculate K1, at 25C for phosphoric acid:...Ch. 18 - a Calculate K1, at 25C for sulfurous acid:...Ch. 18 - The direct reaction of iron(III) oxide. Fe2O3, to...Ch. 18 - Prob. 18.102QPCh. 18 - Prob. 18.103QPCh. 18 - Prob. 18.104QPCh. 18 - Prob. 18.105QPCh. 18 - Cobalt(II) chloride hexahydrate, CoCl26H2O, is a...Ch. 18 - Prob. 18.107QPCh. 18 - Hydrogen gas and iodine vapor react to produce...Ch. 18 - Silver carbonate, Ag2CO3, is a light yellow...Ch. 18 - Prob. 18.110QPCh. 18 - Adenosine triphosphate, ATP, is used as a...Ch. 18 - Prob. 18.112QPCh. 18 - Prob. 18.113QPCh. 18 - Prob. 18.114QPCh. 18 - Sodium acetate crystallizes from a supersaturated...Ch. 18 - According to a source, lithium peroxide (Li2O2)...Ch. 18 - Tetrachloromethane (carbon tetrachloride), CCl4,...Ch. 18 - Prob. 18.118QPCh. 18 - Prob. 18.119QPCh. 18 - Prob. 18.120QPCh. 18 - Prob. 18.121QPCh. 18 - Coal is used as a fuel in some electric-generating...Ch. 18 - Hydrogen bromide dissociates into its gaseous...Ch. 18 - Hydrogen gas and iodine gas react to form hydrogen...Ch. 18 - Prob. 18.125QPCh. 18 - Prob. 18.126QPCh. 18 - Ka for acetic acid at 25.0C is 1754 105. At...Ch. 18 - Ksp for silver chloride at 25.0C is 1.782 1010....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- How are fats and oils structurally similar? How are they different?arrow_forwardGlycolysis is the process by which glucose is metabolized to lactic acid according to the equation C6H12O6(aq)2C3H6O3(aq) G=198 kJ at pH 7.0 and 25°C Glycolysis is the source of energy in human red blood cells. In these cells, the concentration of glucose is 5.0103 M, while that of lactic acid is 2.9103 M. Calculate AG for glycolysis in human blood cells under these conditions. Use the equation G=G+RT In Q, where Q is the concentration quotient, analogous to K.arrow_forwardWhy are enzymes that are used for laboratory or clinical work stored in refrigerators?arrow_forward
- Enzymes function most efficiently at the temperature of a typical cell, which is 37 degrees Celsius. Increases or decreases in temperature can significantly lower the reaction rate. What does this suggest about the importance of temperature-regulating mechanisms in organisms? How does this translate to the development of enzyme assays for clinical laboratory testing equipment? Explain.arrow_forwardWhat do amino acids, fatty acids, and sugars (monosaccharides) have in common? O They are used to make lipids. O They are made of carbon, oxygen, and hydrogen. O They are used to make proteins. O They are made of carbon, oxygen, and nitrogen.arrow_forwardGiven that, in our bodies, when we metabolize molecules to derive energy from them, we are oxidizing these molecules, why is it that we get more energy from a gram of fat (essentially a hydrocarbon) than we get from a gram of sugar (a polyhydroxy aldehyde)?arrow_forward
- Consider a protein with five amino acids and three possible energy levels (separated by 1 J/mol) each amino acid can occupy. At what temperature will there be 45% of molecules in conformation A and 55% of molecules in conformation B? Comment on the size of this number and what distribution you would expect at room temperature. What does this mean about how "different" these energy levels are? Look back at the figure and propose an error made in reporting units. What energy unit would have likely been more appropriate in this case?arrow_forwardcreate a flow chart or diagram to illustrate the digestion and absorption of carbohydrates. The starting carbohydrate molecules are starch, sucrose, lactose, glycogen, and cellulose. What will happen to these carbohydrates once we ingest them? Include the following from your flow chart or |diagram: 1) the location or site where the digestion or |absorption occurs 2) the enzymes 3) the products generated at each site or location You can create your flow chart or diagram using the smart art in your Microsoft word or you may choose to use whatever applications you have. A hand-drawn flow chart is also allowed. The task should also provide your creative interpretation.arrow_forwardAssume the standard Gibbs free energy change or deltaGO=5.02 kJ/mol for the reaction dihydroxyacetone phosphate glyceraldehyde-3-phosphate. Calculate the deltaG for this reaction at 13.6°C when DHAP =0.47M and G3P =0.0025M in kJ/mol to two decimal places. «< Question 25 of 28 A Moving to another question will save this response. Close Windowarrow_forward
- In your own words what is the main reason why lactose is harder to break than sucrose?arrow_forwardWhy guanosine triphosphate (GTP) is important in cellbioenergetics ?arrow_forwardFor years we’ve been told that eating fat will cause various health problems and have been warned to eliminate it from our diet. But now we know that not all fat is the same. By understanding the difference between good and bad fats and how to include more healthy fat in your diet, you can improve your mood, boost your energy and well-being, and even lose weight. Since fat is an important part of a healthy diet, rather than adopting a low-fat diet, it’s more important to focus on eating more beneficial “good” fats and limiting harmful “bad” fats. What is their experience with the health risks associated with ‘bad fat’ intake for example obesity, diabetes, heart disease, strokes, cancer, etc.? Why is eating healthy so important? What are are recommendations for maintaining a healthy diet of ‘good fats’? What's the deal with fats?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- World of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
World of Chemistry
Chemistry
ISBN:9780618562763
Author:Steven S. Zumdahl
Publisher:Houghton Mifflin College Div
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Biomolecules - Protein - Amino acids; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=ySNVPDHJ0ek;License: Standard YouTube License, CC-BY