Tungsten is usually produced by the reduction of WO3 with hydrogen:
Consider the following data:
WO3(s) | H2O(g) | ||
|
−839.9 | −241.8 | |
|
−763–1 | −228.6 |
- a It K > 1 or < 1 at 25°C? Explain your answer.
- b What is the value of ΔS° at 25°C?
- c What is the temperature at which ΔG° equals zero for this reaction at 1 atm pressure?
- d What is the driving force of this reaction?
(a)
Interpretation:
For the given reaction, the value of
Concept introduction:
Standard free energy change:
Standard free energy change is measured by subtracting the product of temperature and standard entropy change from the standard enthalpy change of a system.
Spontaneous process:
The chemical or physical change can takes place by itself without the help of surroundings are called as spontaneous process.
Answer to Problem 18.92QP
For the given reaction the sign of free energy change
Explanation of Solution
To calculate: The value of
Given reaction and information,
Calculate the value of
The sign of free energy change
(b)
Interpretation:
For the given reaction, the value of
Concept introduction:
Standard free energy change:
Standard free energy change is measured by subtracting the product of temperature and standard entropy change from the standard enthalpy change of a system.
Spontaneous process:
The chemical or physical change can takes place by itself without the help of surroundings are called as spontaneous process.
Answer to Problem 18.92QP
The value of entropy change
Explanation of Solution
To calculate: The value of
Calculate the value of
Calculate the value of
The value of entropy change
(c)
Interpretation:
For the given reaction, the value of
Concept introduction:
Standard free energy change:
Standard free energy change is measured by subtracting the product of temperature and standard entropy change from the standard enthalpy change of a system.
Spontaneous process:
The chemical or physical change can takes place by itself without the help of surroundings are called as spontaneous process.
Answer to Problem 18.92QP
At temperature
Explanation of Solution
To calculate: At which temperature the free energy change equals to zero
Consider free energy change
The value of
(d)
Interpretation:
For the given reaction, the value of
Concept introduction:
Standard free energy change:
Standard free energy change is measured by subtracting the product of temperature and standard entropy change from the standard enthalpy change of a system.
Spontaneous process:
The chemical or physical change can takes place by itself without the help of surroundings are called as spontaneous process.
Answer to Problem 18.92QP
The entropy change is the driving force. The value of
Explanation of Solution
To identify: The driving force for the given reaction
The entropy change is the driving force.
The value of
Want to see more full solutions like this?
Chapter 18 Solutions
General Chemistry - Standalone book (MindTap Course List)
- The major industrial use of hydrogen is in the production of ammonia by the Haber process: 3H2(g)+N2(g)2NH3(g) a. Using data from Appendix 4, calculate H, S, and G for the Haber process reaction. b. Is the reaction spontaneous at standard conditions? c. At what temperatures is the reaction spontaneous at standard conditions? Assume H and S do not depend on temperature.arrow_forwardActually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forwardUse the standard free energy of formation data in Appendix G to determine the free energy change for each of the following reactions, which are run under standard state conditions and 25 C. Identify each as either spontaneous or nonspontaneous at these conditions. (a) MnO2(s)Mn(s)+O2(g) (b) H2(g)+Br2(l)2HBr(g) (c) Cu(s)+S(g)CuS(s) (d) 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(g) (e) CH4(g)+O2(g)C(s,graphite)+2H2O(g) (f) CS2(g)+3Cl2(g)CCl4(g)+S2Cl2(g)arrow_forward
- Using values of fH and S, calculate the standard molar free energy of formation, fG, for each of the following: (a) Ca(OH)2(s) (b) Cl(g) (c) Na2CO3(s) Compare your calculated values of fG with those listed in Appendix L. Which of these formation reactions are predicted to be product-favored at equilibrium at 25 C?arrow_forwardHydrazine, N2H4, can be used as the reducing agent in a fuel cell. N2H4(aq) + O2(aq) N2(g) + 2 H2O () (a) If rG for the reaction is 598 kJ, calculate the valueof E expected for the reaction. (b) Suppose the equation is written with all coefficients doubled. Determine rG and E for this new reaction.arrow_forwardConsider the Haber process: N2(g)+3H2(g)2NH3(g);H=91.8kJ The density of ammonia at 25C and 1.00 atm is 0.696 g/L. The density of nitrogen, N2, is 1.145 g/L, and the molar heat capacity is 29.12 J/(mol C). (a) How much heat is evolved in the production of 1.00 L of ammonia at 25C and 1.00 atm? (b) What percentage of this heat is required to heat the nitrogen required for this reaction (0.500 L) from 25C to 400C, the temperature at which the Haber process is run?arrow_forward
- Use the appropriate tables to calculate H for (a) the reaction between copper(II) oxide and carbon monoxide to give copper metal and carbon dioxide. (b) the decomposition of one mole of methyl alcohol (CH3OH) to methane and oxygen gases.arrow_forwardGiven the following standard free energies at 25°C for the following reactions: N2O5(g)2NO(g)+32O2(g)G=59.2kJNO(g)+12O2(g)NO2(g)G=35.6kJ Calculate G° at 25°C for the following reaction: 2NO2(g)+12O2(g)N2O5(g)arrow_forwardWhich molecule, F2, Cl2, Br2, or I2, has the weakest chemical bond?arrow_forward
- In the late eighteenth century Priestley prepared ammonia by reacting HNO3(g) with hydrogen gas. The thermodynamic equation for the reaction is HNO3(g)+4H2(g)NH3(g)+3H2O(g)H=637kJ (a) Calculate H when one mole of hydrogen gas reacts. (b) What is H when 10.00 g of NH3(g) are made to react with an excess of steam to form HN3(g) and H2 gases?arrow_forwardCalculate G for the following reactions and state whether each reaction is spontaneous under standard conditions at 298 K. (a) 2Na(s) + H2SO4() Na2SO4(s) + H2(g) (b) Cu(s) + H2SO4() CuSO4(s) + H2(g)arrow_forwardCalculate H for the reaction N2H4(l)+O2(g)N2(g)+2H2O(l) given the following data: Equation H(KJ) 2NH3(g)+3N2O(g)4N2(g)+3H2O(l) 1010 N2O(g)+3H2(g)N2H4(l)+H2O(l) 317 2NH3(g)+12O2(g)N2H4(l)+H2O(l) 143 H2(g)+12O2(g)H2O(l) 286arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax