The explanations for the given set of statements have to be given. Concept introduction: Free energy: Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system. G = H - TS where, G - free energy; H - enthalpy S - entropy and T -temperature . Relationship between ΔG o , ΔH o and ΔS o is given by ΔG o = ΔH o - TΔS o where, ΔG o - standard free energy change; ΔH o - standard enthalpy change ΔS o - standard entropy change and T - temperature
The explanations for the given set of statements have to be given. Concept introduction: Free energy: Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system. G = H - TS where, G - free energy; H - enthalpy S - entropy and T -temperature . Relationship between ΔG o , ΔH o and ΔS o is given by ΔG o = ΔH o - TΔS o where, ΔG o - standard free energy change; ΔH o - standard enthalpy change ΔS o - standard entropy change and T - temperature
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Above equation shows that, if the value of reaction quotient changes then the value of free energy also change.
(c)
Interpretation Introduction
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
G=H-TSwhere,G-freeenergy;H-enthalpyS-entropy and T-temperature.
Relationship between ΔGo,ΔHoandΔSo is given by
ΔGo=ΔHo-TΔSowhere,ΔGo-standardfreeenergychange;ΔHo-standardenthalpychangeΔSo-standardentropychange and T-temperature
(c)
Expert Solution
Explanation of Solution
To explain: The spontaneity of the given reaction
Given reaction and information
A(g)⇌B(g)positivevalueofKisverylarge.
Since, the value of equilibrium constant is very large, the given reaction is spontaneous.
(d)
Interpretation Introduction
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
G=H-TSwhere,G-freeenergy;H-enthalpyS-entropy and T-temperature.
Relationship between ΔGo,ΔHoandΔSo is given by
ΔGo=ΔHo-TΔSowhere,ΔGo-standardfreeenergychange;ΔHo-standardenthalpychangeΔSo-standardentropychange and T-temperature
(d)
Expert Solution
Explanation of Solution
To check: The given statement
Given statement
ΔGo=ΔG=0
The given statement is not correct. At equilibrium the value of free energy is zero, but the value of standard free energy change is constant. Hence, the given statement is not true.
(e)
Interpretation Introduction
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
G=H-TSwhere,G-freeenergy;H-enthalpyS-entropy and T-temperature.
Relationship between ΔGo,ΔHoandΔSo is given by
ΔGo=ΔHo-TΔSowhere,ΔGo-standardfreeenergychange;ΔHo-standardenthalpychangeΔSo-standardentropychange and T-temperature
(e)
Expert Solution
Explanation of Solution
To check: The composition of the mixture at equilibrium
Given reaction
A(g)⇌B(g)
The value of equilibrium constant is very large, so at equilibrium the composition will mostly the product side (i.e.B(g)).
(f)
Interpretation Introduction
Interpretation:
The explanations for the given set of statements have to be given.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
G=H-TSwhere,G-freeenergy;H-enthalpyS-entropy and T-temperature.
Relationship between ΔGo,ΔHoandΔSo is given by
ΔGo=ΔHo-TΔSowhere,ΔGo-standardfreeenergychange;ΔHo-standardenthalpychangeΔSo-standardentropychange and T-temperature
(f)
Expert Solution
Explanation of Solution
To give: The values of ΔGo,ΔGandK and also the composition of the mixture at equilibrium, spontaneity of the reverse reaction
Given reaction
B(g)⇌A(g)
For the reverse reaction, Kr=1/Kf so the value of standard free energy change is same but opposite sign and will be a constant.
At equilibrium, the value of free energy change is zero. The reaction mixture will mostly reactant side (i.e.B(g)).
The given reverse reaction is non-spontaneous.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY