GO Hot chocolate effect . Tap a metal spoon inside a mug of water and note the frequency f i you hear. Then add a spoonful of powder (say, chocolate mix or instant coffee) and tap again as you stir the powder. The frequency you hear has a lower value f s because the tiny air bubbles released by the powder change the water’s bulk modulus. As the bubbles reach the water surface and disappear, the frequency gradually shifts back to its initial value. During the effect, the bubbles don’t appreciably change the water’s density or volume or the sound’s wavelength. Rather, they change the value of dV/dp— that is, the differential change in volume due to the differential change in the pressure caused by the sound wave in the water. If f s / f i = 0.333, what is the ratio ( dV / dp ) s /( dV / dp ) i ?
GO Hot chocolate effect . Tap a metal spoon inside a mug of water and note the frequency f i you hear. Then add a spoonful of powder (say, chocolate mix or instant coffee) and tap again as you stir the powder. The frequency you hear has a lower value f s because the tiny air bubbles released by the powder change the water’s bulk modulus. As the bubbles reach the water surface and disappear, the frequency gradually shifts back to its initial value. During the effect, the bubbles don’t appreciably change the water’s density or volume or the sound’s wavelength. Rather, they change the value of dV/dp— that is, the differential change in volume due to the differential change in the pressure caused by the sound wave in the water. If f s / f i = 0.333, what is the ratio ( dV / dp ) s /( dV / dp ) i ?
GOHot chocolate effect. Tap a metal spoon inside a mug of water and note the frequency fi you hear. Then add a spoonful of powder (say, chocolate mix or instant coffee) and tap again as you stir the powder. The frequency you hear has a lower value fs because the tiny air bubbles released by the powder change the water’s bulk modulus. As the bubbles reach the water surface and disappear, the frequency gradually shifts back to its initial value. During the effect, the bubbles don’t appreciably change the water’s density or volume or the sound’s wavelength. Rather, they change the value of dV/dp—that is, the differential change in volume due to the differential change in the pressure caused by the sound wave in the water. If fs/fi = 0.333, what is the ratio (dV/dp)s/(dV/dp)i?
You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have
Question 2 options:
sped up at perihelion
sped up at aphelion
slowed down at perihelion
slowed down at aphelion
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.