Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 19P
GO Figure 17-35 shows two isotropic point sources of sound, S1 and S2. The sources emit waves in phase at wavelength 0.50 m; they are separated by D = 1.75 m. If we move a sound detector along a large circle centered at the midpoint between the sources, at how many points do waves arrive at the detector (a) exactly in phase and (b) exactly out of phase?
Figure 17-35 Problems 19 and 105.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure shows four isotropic point sources of sound that are uniformly spaced on an x axis. The sources emit sound at the same
wavelength and same amplitude Sm, and they emit in phase. A point P is shown on the x axis. Assume that as the sound waves travel to
P, the decrease in their amplitude is negligible. What multiple of sm is the amplitude of the net wave at P if distance d in the figure is (a)
5λ/4, (b) 51/2, and (c) 5λ?
(a) Number i
(b) Number i
(c) Number
i
|aa|
Units
Units
Units
◄►
P
Problem 3: The human ear can detect a minimum intensity of Io = 10-12 W/m2, which has a sound intensity of 0 dB.Randomized Variables
β = 45 dB
If the student hears a sound at 45 dB, what is the intensity of the sound?Numeric : A numeric value is expected and not an expression.I = __________________________________________
Problem 4: A student exchanges the stock headphones (β1 = 87 dB) for her mp3 player for a new set that is louder (β2 = 95 dB).
If the first set produced a power of P1 = 0.5 W how much power does the new set produce, P2 in W?Numeric : A numeric value is expected and not an expression.P2 = __________________________________________
The figure shows four isotropic point sources of sound that are uniformly spaced on an x axis. The sources emit sound at the same
wavelength A and same amplitude sm: and they emit in phase. A point P is shown on the x axis. Assume that as the sound waves travel to
P, the decrease in their amplitude is negligible. What multiple of sm is the amplitude of the net wave at P if distance d in the figure is
(a)1A, (b)2A, and (c)4A?
Sa
(a) Number
45
Units
m
(b) Number
45
Units
(c) Number
45
Units
m
Chapter 17 Solutions
Fundamentals of Physics Extended
Ch. 17 - In a first experiment, a sinusoidal sound wave is...Ch. 17 - In Fig. 17-25, two point sources S1, and S2, which...Ch. 17 - In Fig. 17-26, three long tubes A,B, and C are...Ch. 17 - Prob. 4QCh. 17 - In Fig. 17-27, pipe A is made to oscillate in its...Ch. 17 - Prob. 6QCh. 17 - Figure 17-28 shows a moving sound source S that...Ch. 17 - Prob. 8QCh. 17 - For a particular tube, here are four of the six...Ch. 17 - Prob. 10Q
Ch. 17 - You are given four tuning forks. The fork with the...Ch. 17 - Two spectators at a soccer game see, and a moment...Ch. 17 - What is the bulk modulus of oxygen if 32.0 g of...Ch. 17 - Prob. 3PCh. 17 - A column of soldiers, marching at 120 paces per...Ch. 17 - Prob. 5PCh. 17 - A man strikes one end of a thin rod with a hammer....Ch. 17 - SSM WWW A stone is dropped into a well. The splash...Ch. 17 - GO Hot chocolate effect. Tap a metal spoon inside...Ch. 17 - If the form of a sound wave traveling through air...Ch. 17 - Prob. 10PCh. 17 - SSM Diagnostic ultrasound of frequency 4.50 MHz is...Ch. 17 - The pressure in a traveling sound wave is given by...Ch. 17 - A sound wave of the form s = sm coskx t travels...Ch. 17 - Figure 17-32 shows the output from a pressure...Ch. 17 - GO A handclap on stage in an amphitheater sends...Ch. 17 - Two sound waves, from two different sources with...Ch. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - GO Figure 17-35 shows two isotropic point sources...Ch. 17 - Figure 17-36 shows four isotropic point sources of...Ch. 17 - SSM In Fig. 17-37, two speakers separated by...Ch. 17 - In Fig. 17-38, sound with a 40.0 cm wavelength...Ch. 17 - GO Figure 17-39 shows two point sources S1 and S2...Ch. 17 - Suppose that the sound level of a conversation is...Ch. 17 - A sound wave of frequency 300Hz has an intensity...Ch. 17 - Prob. 26PCh. 17 - SSM WWW A certain sound source is increased in...Ch. 17 - Two sounds differ in sound level by 1.00 dB. What...Ch. 17 - Prob. 29PCh. 17 - The source of a sound wave has a power of 1.00 W....Ch. 17 - GO When you crack a knuckle, you suddenly widen...Ch. 17 - Approximately a third of people with normal...Ch. 17 - Male Rana catesbeiana bullfrogs arc known for...Ch. 17 - GO Two atmospheric sound sources A and B emit...Ch. 17 - A point source emits 30.0 W of sound...Ch. 17 - Party hearing. As the number of people at a party...Ch. 17 - Prob. 37PCh. 17 - The water level in a vertical glass tube 1.00 m...Ch. 17 - Prob. 39PCh. 17 - Organ pipe A, with both ends open, has a...Ch. 17 - A violin siring 15.0 cm long and fixed at both...Ch. 17 - A sound wave in a fluid medium is reflected at a...Ch. 17 - SSM In Fig. 17-41, S is a small loudspeaker driven...Ch. 17 - The crest of a Parasaurolophus dinosaur skull is...Ch. 17 - In pipe A, the ratio of a particular harmonic...Ch. 17 - GO Pipe A. which is 1.20 m long and open at both...Ch. 17 - A well with vertical sides and water at the bottom...Ch. 17 - One of the harmonic frequencies of tube A with two...Ch. 17 - SSM A violin string 30.0 cm long with linear...Ch. 17 - Prob. 50PCh. 17 - The A string of a violin is a little too tightly...Ch. 17 - A tuning fork of unknown frequency makes 3.00...Ch. 17 - SSM Two identical piano wires have a fundamental...Ch. 17 - You have five tuning forks that oscillate at close...Ch. 17 - Prob. 55PCh. 17 - An ambulance with a siren emitting a whine at 1600...Ch. 17 - A state trooper chases a speeder along a straight...Ch. 17 - Prob. 58PCh. 17 - GO In Fig. 17-42, a French submarine and a U.S....Ch. 17 - A stationary motion detector sends sound waves of...Ch. 17 - GO A bat is flitting about in a cave, navigating...Ch. 17 - Figure 17-43 shows four tubes with lengths 1.0 m...Ch. 17 - ILWAn acoustic burglar alarm consists of a source...Ch. 17 - A stationary detector measures the frequency of a...Ch. 17 - GO A 2000 Hz siren and a civil defense official...Ch. 17 - GO Two trains are traveling toward each other at...Ch. 17 - SSM WWWA girl is sitting near the open window of a...Ch. 17 - Prob. 68PCh. 17 - SSMA jet plane passes over you at a height of 5000...Ch. 17 - A plane flies at 1.25 times the speed of sound....Ch. 17 - At a distance of 10 km, a 100 Hz horn, assumed to...Ch. 17 - A bullet is fired with a speed of 685 m/s. Find...Ch. 17 - Prob. 73PCh. 17 - The average density of Earths crust 10 km beneath...Ch. 17 - A certain loudspeaker system emits sound...Ch. 17 - Find the ratios greater to smaller of the a...Ch. 17 - Prob. 77PCh. 17 - A trumpet player on a moving railroad flatcar...Ch. 17 - GO In Fig. 17-46, sound of wavelength 0.850 m is...Ch. 17 - GO A detector initially moves at constant velocity...Ch. 17 - SSMa If two sound waves, one in air and one in...Ch. 17 - A continuous sinusoidal longitudinal wave is sent...Ch. 17 - SSMUltrasound, which consists of sound waves with...Ch. 17 - The speed of sound in a certain metal is vm. One...Ch. 17 - An avalanche of sand along some rare desert sand...Ch. 17 - A sound source moves along an x axis, between...Ch. 17 - SSMA siren emitting a sound of frequency 1000 Hz...Ch. 17 - Prob. 88PCh. 17 - Prob. 89PCh. 17 - Prob. 90PCh. 17 - Prob. 91PCh. 17 - You can estimate your distance from a lightning...Ch. 17 - SSMFigure 17-48 shows an air-filled, acoustic...Ch. 17 - Prob. 94PCh. 17 - SSMThe sound intensity is 0.0080 W/m2 at a...Ch. 17 - Four sound waves are to be sent through the same...Ch. 17 - Prob. 97PCh. 17 - A point source that is stationary on an x axis...Ch. 17 - You are standing at a distance D from an isotropic...Ch. 17 - Pipe A has only one open end; pipe B is four times...Ch. 17 - A pipe 0.60 m long and closed at one end is filled...Ch. 17 - A sound wave travels out uniformly in all...Ch. 17 - A police car is chasing a speeding Porsche 911....Ch. 17 - Suppose a spherical loudspeaker emits sound...Ch. 17 - In Fig. 17-35. S1 and S2 are two isotropic point...Ch. 17 - Prob. 106PCh. 17 - Kundts method for measuring the speed of sound. In...Ch. 17 - Prob. 108PCh. 17 - In Fig. 17-53, a point source S of sound waves...Ch. 17 - A person on a railroad car blows a trumpet note at...Ch. 17 - A listener at rest with respect to the air and the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
An exhaust fan in a building should be able to move 6Ibm/s of air at 14.4psia,68F through a 1.4-ft-diameter ven...
Fundamentals Of Thermodynamics
29. Consider the unbalanced equation for the reaction of solid lead with silver nitrate:
a. Balance the equati...
Introductory Chemistry (6th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
10. FIGURE EX1.10 shows two dots of a motion diagram and vector1. Copy this figure, then add dot 3 and the next...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
You microscopically examine scrapings from a case of Acan-thamoeba keratitis. You expect to see a. nothing. b. ...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forwardTwo sinusoidal waves travel in the same direction with the same amplitude, wavelength, and speed. Their resultant wave function is - given by:y_res (x,t)=4cm sin(Kx- wt+π/6).The amplitude, A, of each of the original sinusoidal waves producing the resultant wave is: O 2√3 cm O √3/2cm O 2√3/3cm. O 4√3/3cmarrow_forwardConsider a composite wave formed by two plane waves with slightly different frequencies of 0, = 2.7 x 1012 rad/s and aw2 = 2.9 × 1012 rad/s and respective wavelengths A1 = 17.0 nm and 2 16.0 nm. Calculate the propagation velocity %D of the envelope wave and give your results in units of m/s with 1 digit precision, rounding off to one decimal place, i.e. the nearest tenth. (time budget 5min)arrow_forward
- Sound is detected when a sound wave causes the tympanic membrane (the ear drum) to vibrate. Typically, the diameter of this membrane is about 8.4 mm in humans. A) how much energy is delivered to the eardrum each second when someone whispers (20 dB) into your ear? B) to comprehend how sensitive the ear is to very small amounts of energy, calculate how fast a typical 2.0 mg mosquito would have to fly (in mm/s) to have this amount of kinetic energy.arrow_forward2 In Fig. 16-24, wave 1 consists of a rectangular peak of height 4 units and width d, and a rectangular valley of depth 2 units and width d. The wave travels rightward along an x axis Choices 2, 3, and 4 are similar waves, with the same heights, depths, and widths, that will travel leftward along that axis and through wave 1. Right-going wave 1 and one of the left-going waves will interfere as they pass through each other. With which left-going wave will the interference give, for an instant, (a) the deepest valley, (b) a flat line, and (c) a flat peak 2d wide? (1) (2) (3) (4)arrow_forwardO y1 = 0.01 sin(5Ttx-40tt); y2 = 0.01 sin(5Tx+40Tt), %3D O y1 = 0.005 sin(5tx-40nt); y2 = 0.005 sin(5Ttx+40nt), Two sinusoidal waves travelling in the same direction with the same amplitude, wavelength, and speed, interfere with each other to give the resultant wave: y_res (x,t) = 4 cm sin(4Ttx-60Tt+Tt/3). The amplitude of the individual waves %3D generating this wave is: 2 cm 2/v3 cm 8 cm O 4 cm O 4/13 cm ding waye on a wire 1.8m long clamped atarrow_forward
- 5-7. An airborne plane sound wave of frequency 1881 Hz is incident at an' angle 45° on the calm surface of a freshwater lake. Assume the tempera- ture is 20°C for the water and the air. The sound pressure level (SPL) of the incident sound wave is 100 dB (re 20µPa). What is the SPL of the sound in the water (re 1µPa) 0.1 m below the surface?arrow_forwardc) When testing a supersonic jet nozzle for certification purposes, an aerospace engineer used a far-field microphone to measure the noise power spectrum density (PSD) radi- ated by the jet issuing from the nozzle. The engineer found that the measured noise spectrum, PSD(f)=: dW where f is frequency and W is acoustic power can be repres- df ented by a piece-wise linear function (Equation1): PSD=0,if f2fo. Calculate the acoustic power, W in physical pressure units (Pa") corresponding to the jet noise perceived at the same microphone location as a function of A and fo. What is the acoustic power in case A=200 Pa'/ Hz and fo=100 Hz? Provide a clear explanation of every step of your analysis.arrow_forwardProblem 7: An audio engineer takes decibel readings at distances of r1 = 11 m and r2 = 25 m from a concert stage speaker during a sound check. When he is r1 from the speaker, the engineer registers a decibel level of β1 = 103 dB on his loudness meter.Randomized Variables r1 = 11 mr2 = 25 mβ1 = 103 dBPart (a) What is the intensity of the sound, I1, in watts per square meter, that is measured by the loudness meter when the engineer is a distance of r1 from the speaker? Part (b) How much power P, in watts, is coming from the speaker during the sound check at distance r1? Part (c) Assuming that the speaker output does not change between the two measurements at r1 and r2, what sound intensity level β2, in decibels, will the loudness meter report when the engineer is at a distance r2 from the speaker?arrow_forward
- The figure shows four isotropic point sources of sound that are uniformly spaced on an x axis. The sources emit sound at the same wavelength and same amplitude sm, and they emit in phase. A point P is shown on the x axis. Assume that as the sound waves travel to P, the decrease in their amplitude is negligible. What multiple of sm is the amplitude of the net wave at P if distance d in the figure is (a)1A, (b)2A, and (c)4A? (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forwardProblem 1: An audio engineer takes decibel readings at distances of r = 14 m and ry = 22 m from a concert stage speaker during a sound check. When he is r, from the speaker, the engineer registers a decibel level of B1 = 117 dB on his loudness meter. Randomized Variables r1 = 14 m r2 = 22 m B1 = 117 dB Part (a) What is the intensity of the sound, I, in watts per square meter, that is measured by the loudness meter when the engineer is a distance of r, from the speaker? I = sin() cos() tan() 8 HOME cotan() asin() acos() 4 5 6. atan() acotan() sinh() 1 2 3 tanh() ODegrees O Radians cosh() cotanh() END vol BACKSPACE DEL CLEAR Submit Hint Feedback I give up! Part (b) How much power P, in watts, is coming from the speaker during the sound check at distance r? Part (c) Assuming that the speaker output does not change between the two measurements at r1 and r2. what sound intensity level B2, in decibels, will the loudness meter report when the engineer is at a distance rz from the speaker?arrow_forwardan airfilled, acoustic interferometer, used to demonstrate the interference of sound waves. Sound source S is an oscillating diaphragm; D is a sound detector, such as the ear or a microphone. Path SBD can be varied in length, but path SAD is fixed. At D, the sound wave coming along path SBD interferes with that coming along path SAD. In one demonstration, the sound intensity at D has a minimum value of 100 units at one position of the movable arm and continuously climbs to a maximum value of 900 units when that arm is shifted by 1.65 cm. Find (a) the frequency of the sound emitted by the source and (b) the ratio of the amplitude at D of the SAD wave to that of the SBD wave. (c) How can it happen that these waves have different amplitudes, considering that they originate at the same source?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY