Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 18P
To determine
To find:
a) The smallest value of
b) The second smallest value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 2: You are hiking along a trail in a wide, dry canyon where the outdoor temperature is T = 25.5° C. To determine how far you are away from the canyon wall you yell “Hello” and hear the echo t = 1.95 s later.Randomized Variables
T = 25.5° Ct = 1.95 s
Part (a) Calculate the speed of sound in the valley in meters per second, assuming the speed at 0° C is 332 m/s.Numeric : A numeric value is expected and not an expression.v = __________________________________________Part (b) How far are you from the canyon wall, in meters?Numeric : A numeric value is expected and not an expression.D = __________________________________________Part (c) If you stood at the same point on a cold morning where the temperature was T2 = -5.5 degrees C, how long would it have taken for you to hear the echo, in seconds?Numeric : A numeric value is expected and not an expression.t2 = __________________________________________
Two waves Y1 = 3.6 sin (942 t –0.02512 x + 3n) and Y2 = 3.8 sin (942 t –0.02512 x + 47)
interfere.
Compute: (a) the frequency (f) of each wave, and (b) the wavelength (^.) of each wave (All
quantities are in SI units)
An interface is formed between a block of aluminium (with an acoustic impedance of 1.8 x 107 kg m2 s') and a block of copper (with an acoustic impedance
of 4.6 x 107 kg m-2 s-1).
Longitudinal sound waves travelling through the aluminium are normally incident on the boundary, and are partially reflected.
a) What is the ratio of the amplitude of the reflected wave to that of the incident wave?
Number
b) What is the ratio of the amplitude of the transmitted wave to that of the incident wave?
Number
c) What percentage of the incident power is transmitted?
Number
d) What percentage of the incident power is reflected?
Number
%
Ouit P Sove
Questi
Chapter 17 Solutions
Fundamentals of Physics Extended
Ch. 17 - In a first experiment, a sinusoidal sound wave is...Ch. 17 - In Fig. 17-25, two point sources S1, and S2, which...Ch. 17 - In Fig. 17-26, three long tubes A,B, and C are...Ch. 17 - Prob. 4QCh. 17 - In Fig. 17-27, pipe A is made to oscillate in its...Ch. 17 - Prob. 6QCh. 17 - Figure 17-28 shows a moving sound source S that...Ch. 17 - Prob. 8QCh. 17 - For a particular tube, here are four of the six...Ch. 17 - Prob. 10Q
Ch. 17 - You are given four tuning forks. The fork with the...Ch. 17 - Two spectators at a soccer game see, and a moment...Ch. 17 - What is the bulk modulus of oxygen if 32.0 g of...Ch. 17 - Prob. 3PCh. 17 - A column of soldiers, marching at 120 paces per...Ch. 17 - Prob. 5PCh. 17 - A man strikes one end of a thin rod with a hammer....Ch. 17 - SSM WWW A stone is dropped into a well. The splash...Ch. 17 - GO Hot chocolate effect. Tap a metal spoon inside...Ch. 17 - If the form of a sound wave traveling through air...Ch. 17 - Prob. 10PCh. 17 - SSM Diagnostic ultrasound of frequency 4.50 MHz is...Ch. 17 - The pressure in a traveling sound wave is given by...Ch. 17 - A sound wave of the form s = sm coskx t travels...Ch. 17 - Figure 17-32 shows the output from a pressure...Ch. 17 - GO A handclap on stage in an amphitheater sends...Ch. 17 - Two sound waves, from two different sources with...Ch. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - GO Figure 17-35 shows two isotropic point sources...Ch. 17 - Figure 17-36 shows four isotropic point sources of...Ch. 17 - SSM In Fig. 17-37, two speakers separated by...Ch. 17 - In Fig. 17-38, sound with a 40.0 cm wavelength...Ch. 17 - GO Figure 17-39 shows two point sources S1 and S2...Ch. 17 - Suppose that the sound level of a conversation is...Ch. 17 - A sound wave of frequency 300Hz has an intensity...Ch. 17 - Prob. 26PCh. 17 - SSM WWW A certain sound source is increased in...Ch. 17 - Two sounds differ in sound level by 1.00 dB. What...Ch. 17 - Prob. 29PCh. 17 - The source of a sound wave has a power of 1.00 W....Ch. 17 - GO When you crack a knuckle, you suddenly widen...Ch. 17 - Approximately a third of people with normal...Ch. 17 - Male Rana catesbeiana bullfrogs arc known for...Ch. 17 - GO Two atmospheric sound sources A and B emit...Ch. 17 - A point source emits 30.0 W of sound...Ch. 17 - Party hearing. As the number of people at a party...Ch. 17 - Prob. 37PCh. 17 - The water level in a vertical glass tube 1.00 m...Ch. 17 - Prob. 39PCh. 17 - Organ pipe A, with both ends open, has a...Ch. 17 - A violin siring 15.0 cm long and fixed at both...Ch. 17 - A sound wave in a fluid medium is reflected at a...Ch. 17 - SSM In Fig. 17-41, S is a small loudspeaker driven...Ch. 17 - The crest of a Parasaurolophus dinosaur skull is...Ch. 17 - In pipe A, the ratio of a particular harmonic...Ch. 17 - GO Pipe A. which is 1.20 m long and open at both...Ch. 17 - A well with vertical sides and water at the bottom...Ch. 17 - One of the harmonic frequencies of tube A with two...Ch. 17 - SSM A violin string 30.0 cm long with linear...Ch. 17 - Prob. 50PCh. 17 - The A string of a violin is a little too tightly...Ch. 17 - A tuning fork of unknown frequency makes 3.00...Ch. 17 - SSM Two identical piano wires have a fundamental...Ch. 17 - You have five tuning forks that oscillate at close...Ch. 17 - Prob. 55PCh. 17 - An ambulance with a siren emitting a whine at 1600...Ch. 17 - A state trooper chases a speeder along a straight...Ch. 17 - Prob. 58PCh. 17 - GO In Fig. 17-42, a French submarine and a U.S....Ch. 17 - A stationary motion detector sends sound waves of...Ch. 17 - GO A bat is flitting about in a cave, navigating...Ch. 17 - Figure 17-43 shows four tubes with lengths 1.0 m...Ch. 17 - ILWAn acoustic burglar alarm consists of a source...Ch. 17 - A stationary detector measures the frequency of a...Ch. 17 - GO A 2000 Hz siren and a civil defense official...Ch. 17 - GO Two trains are traveling toward each other at...Ch. 17 - SSM WWWA girl is sitting near the open window of a...Ch. 17 - Prob. 68PCh. 17 - SSMA jet plane passes over you at a height of 5000...Ch. 17 - A plane flies at 1.25 times the speed of sound....Ch. 17 - At a distance of 10 km, a 100 Hz horn, assumed to...Ch. 17 - A bullet is fired with a speed of 685 m/s. Find...Ch. 17 - Prob. 73PCh. 17 - The average density of Earths crust 10 km beneath...Ch. 17 - A certain loudspeaker system emits sound...Ch. 17 - Find the ratios greater to smaller of the a...Ch. 17 - Prob. 77PCh. 17 - A trumpet player on a moving railroad flatcar...Ch. 17 - GO In Fig. 17-46, sound of wavelength 0.850 m is...Ch. 17 - GO A detector initially moves at constant velocity...Ch. 17 - SSMa If two sound waves, one in air and one in...Ch. 17 - A continuous sinusoidal longitudinal wave is sent...Ch. 17 - SSMUltrasound, which consists of sound waves with...Ch. 17 - The speed of sound in a certain metal is vm. One...Ch. 17 - An avalanche of sand along some rare desert sand...Ch. 17 - A sound source moves along an x axis, between...Ch. 17 - SSMA siren emitting a sound of frequency 1000 Hz...Ch. 17 - Prob. 88PCh. 17 - Prob. 89PCh. 17 - Prob. 90PCh. 17 - Prob. 91PCh. 17 - You can estimate your distance from a lightning...Ch. 17 - SSMFigure 17-48 shows an air-filled, acoustic...Ch. 17 - Prob. 94PCh. 17 - SSMThe sound intensity is 0.0080 W/m2 at a...Ch. 17 - Four sound waves are to be sent through the same...Ch. 17 - Prob. 97PCh. 17 - A point source that is stationary on an x axis...Ch. 17 - You are standing at a distance D from an isotropic...Ch. 17 - Pipe A has only one open end; pipe B is four times...Ch. 17 - A pipe 0.60 m long and closed at one end is filled...Ch. 17 - A sound wave travels out uniformly in all...Ch. 17 - A police car is chasing a speeding Porsche 911....Ch. 17 - Suppose a spherical loudspeaker emits sound...Ch. 17 - In Fig. 17-35. S1 and S2 are two isotropic point...Ch. 17 - Prob. 106PCh. 17 - Kundts method for measuring the speed of sound. In...Ch. 17 - Prob. 108PCh. 17 - In Fig. 17-53, a point source S of sound waves...Ch. 17 - A person on a railroad car blows a trumpet note at...Ch. 17 - A listener at rest with respect to the air and the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 1: You are hiking along a trail in a wide, dry canyon where the outdoor temperature is T = 29.5° C. To determine how far you are away from the canyon wall you yell "Hello" and hear the echo t = 2.4 s later. Randomized Variables T = 29,5° C t = 2.4 s Part (a) Calculate the speed of sound in the valley in meters per second, assuming the speed at 0° C is 332 m/s. Numeric : A numeric value is expected and not an expression. V = Part (b) How far are you from the canyon wall, in meters? Numeric : A numeric value is expected and not an expression. D = Part (c) If you stood at the same point on a cold morning where the temperature was T2 = -4.5 degrees C, how long would it have taken for you to hear the echo, in seconds? Numeric : A numeric value is expected and not an expression. t2arrow_forwardLet ✰, ŷ be unit vectors in the positive x, y directions. A right-hand circular polarised wave travelling in the positive z direction has an electric field vector given by - - - Er = Eo✰ cos(kz – wt) + Eoŷ cos(kz – wt − 2), and a corresponding left-hand circular polarised wave, with an additional phase shift of 6, has an electric field vector given by EL - = Eox cos(kz wt + 8) + Eoŷ cos(kz - wt + + d). 2 Prove that the sum of these two circular polarised waves is equivalent to a single plane- polarised wave with its plane of polarisation at angle -8/2 from the x axis.arrow_forwardan airfilled, acoustic interferometer, used to demonstrate the interference of sound waves. Sound source S is an oscillating diaphragm; D is a sound detector, such as the ear or a microphone. Path SBD can be varied in length, but path SAD is fixed. At D, the sound wave coming along path SBD interferes with that coming along path SAD. In one demonstration, the sound intensity at D has a minimum value of 100 units at one position of the movable arm and continuously climbs to a maximum value of 900 units when that arm is shifted by 1.65 cm. Find (a) the frequency of the sound emitted by the source and (b) the ratio of the amplitude at D of the SAD wave to that of the SBD wave. (c) How can it happen that these waves have different amplitudes, considering that they originate at the same source?arrow_forward
- Two sinusoidal waves of wavelength A = 2/3 m and amplitude A = 6 cm and differing with their phase constant, are travelling to the right with same velocity v = 60 m/s. The resultant wave function y_res (x,t) will have the form: y_res (x,t) = 12(cm) cos(4/2) sin(3Ttx+150rnt+p/2). %3D y_res (x,t) = 12(cm) cos(4/2) sin(3tx- 150πt+φ/2). %3D y_res (x,t) = 12(cm) cos(p/2) sin(150Ttx+3t+p/2). %3D y_res (x,t) = 12(cm) cos(p/2) sin(150tx- 3πt+φ/2). y_res (x,t) = 12(cm) cos(4/2) sin(3Ttx- 180nt+p/2).arrow_forwardProblem 4: A traveling wave along the x-axis is given by the following wave functionψ(x, t) = 3.6 cos(1.4x - 9.2t + 0.34),where x in meter, t in seconds, and ψ in meters. Read off the appropriate quantities for this wave function and find the following characteristics of this plane wave: Part (a) The amplitude in meters. Part (b) The frequency, in hertz. Part (c) The wavelength in meters. Part (d) The wave speed, in meters per second. Part (e) The phase constant in radians.arrow_forwardTwo sinusoidal waves of wavelength A = 2/3 m and amplitude A = 6 cm and differing with their phase constant, are travelling to the right with same velocity v 50 m/s. The resultant wave function y_res (x,t) will have the form: y_res (x,t) = 12(cm) cos(4/2) sin(150πx-3πt+ φ/2) . y_res (x,t) = 12(cm) cos(4/2) sin(3nx- 150rtt+p/2). y_res (x,t) = 12(cm) cos(4/2) sin(3tx+150rtt+p/2). y_res (x,t) = 12(cm) cos(p/2) sin(3nx- 180rtt+p/2). y_res (x,t) = 12(cm) cos(4/2) sin(150πx+3πt +φ/2) . Page 2 of 2arrow_forward
- A wave pulse is traveling on a string with a speed v towards the positive x-axis. The shape of the string at t = 0 is given by g(x) = A sin(x/a), where A and a are constants. (a) What are the dimensions of A and a? (b) Write the equations of the wave for a general time t, if the wave speed is v.arrow_forwardTwo sinusoidal waves of wavelength A = 2/3 m and amplitude A = 6 cm and %3D differing with their phase constant, are travelling to the right with same velocity v = 60 m/s. The resultant wave function y res (x,t) will have the form: %3D O y_res (x,t) = 12(cm) cos(p/2) sin(150rtx-3rt+p/2). %3D O y-res (x,t) = 12(cm) cos(4/2) sin(3tx-150rt+p/2). %3D O y_res (x,t) = 12(cm) cos(4/2) sin(150tx+3rt+p/2). %3D O y_res (x,t) = 12(cm) cos(p/2) sin(3rtx+150rt+p/2). %3D O y-res (x,t) = 12(cm) cos(4/2) sin(3rtx-180rt+p/2). %3D A standing wave on a string of length L = 3 m is described by the followingarrow_forwardTwo sinusoidal waves of wavelength λ = 2/3 m and amplitude A = 6 cm and differing with their phase constant, are travelling to the left with same velocity v = 50 m/s. The resultant wave function y_res (x,t) will have the form: y_res (x,t) = 12(cm) cos(φ/2) sin(150πx+3πt+φ/2). y_res (x,t) = 12(cm) cos(φ/2) sin(3πx+150πt+φ/2). y_res (x,t) = 12(cm) cos(φ/2) sin(3πx-150πt+φ/2). y_res (x,t) = 12(cm) cos(φ/2) sin(3πx-180πt+φ/2). y_res (x,t) = 12(cm) cos(φ/2) sin(150πx-3πt+φ/2).arrow_forward
- A capillary wave is a wave traveling across the surface of a fluid that is driven by the surface tension within the fluid. The speed v of a capillary wave depends on the density of the fluid ?ρ , the wavelength of the wave ?λ, and the surface tension ?σ . The SI units of surface tension are J/m2. The capillary wave speed can be written as ?=???????v=kσaρbλc , where k is some unitless constant. What must be the value of c?arrow_forwardTwo transverse sinusoidal waves combining in a string are described by the wave functions y1 = 0.02 sin(4Ttx+rtt) and y2 = 0.02 sin(4Ttx-Ttt), where x and y are in meters, andt is in seconds. If after superposition, a standing wave of 3 loops is formed, then the length of the string is: O 2 m 1.5 m 0.5 m 0.75 marrow_forwardConsider a composite wave formed by two plane waves with slightly different frequencies of 0, = 2.7 x 1012 rad/s and aw2 = 2.9 × 1012 rad/s and respective wavelengths A1 = 17.0 nm and 2 16.0 nm. Calculate the propagation velocity %D of the envelope wave and give your results in units of m/s with 1 digit precision, rounding off to one decimal place, i.e. the nearest tenth. (time budget 5min)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON