The speed of sound in a certain metal is v m . One end of a long pipe of that metal of length L is struck a hard blow. A listener at the other end hears two sounds, one from the wave that travels along the pipe’s metal wall and the other from the wave that travels through the air inside the pipe. (a) If v is the speed of sound in air, what is the time interval Δ t between the arrivals of the two sounds at the listener’s ear? (b) If Δ t = 1.00 s and the metal is steel, what is the length L ?
The speed of sound in a certain metal is v m . One end of a long pipe of that metal of length L is struck a hard blow. A listener at the other end hears two sounds, one from the wave that travels along the pipe’s metal wall and the other from the wave that travels through the air inside the pipe. (a) If v is the speed of sound in air, what is the time interval Δ t between the arrivals of the two sounds at the listener’s ear? (b) If Δ t = 1.00 s and the metal is steel, what is the length L ?
The speed of sound in a certain metal is vm. One end of a long pipe of that metal of length L is struck a hard blow. A listener at the other end hears two sounds, one from the wave that travels along the pipe’s metal wall and the other from the wave that travels through the air inside the pipe. (a) If v is the speed of sound in air, what is the time interval Δt between the arrivals of the two sounds at the listener’s ear? (b) If Δt = 1.00 s and the metal is steel, what is the length L?
The speed of sound in a certain metal is vm. One end of a long pipe of that metal of length L is struck a hard blow. A listener at the other end hears two sounds, one from the wave that travels along the pipe’s metal wall and the other from the wave that travels through the air inside the pipe. (a) If v is the speed of sound in air, what is the time interval t between the arrivals of the two sounds at the listener’s ear? (b) If t = 1.00 s and the metal is steel, what is the length L?
Sound is detected when a sound wave causes the tympanic membrane (the ear drum) to vibrate. Typically, the diameter of this membrane is about 8.4 mm in humans. A) how much energy is delivered to the eardrum each second when someone whispers (20 dB) into your ear? B) to comprehend how sensitive the ear is to very small amounts of energy, calculate how fast a typical 2.0 mg mosquito would have to fly (in mm/s) to have this amount of kinetic energy.
You are watching a pier being constructed on the far shore of a saltwater inlet when some blasting occurs. You hear the sound in the water 2.86 s before it reaches you through the air. How wide is the inlet? Assume the temperature is 20 degrees C, the speed of sound in air at 0 degrees C is 331 m/s, and the speed of sound in saltwater is 1530 m/s. Answer in units of km.
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.