A continuous sinusoidal longitudinal wave is sent along a very long coiled spring from an attached oscillating source. The wave travels in the negative direction of an x axis; the source frequency is 25 Hz; at any instant the distance between successive points of maximum expansion in the spring is 24 cm; the maximum longitudinal displacement of a spring particle is 0.30 cm; and the particle at x = 0 has zero displacement at time t = 0. If the wave is written in the form s ( x , t ) = s m cos( kx ± ωt ), what are (a) s m , (b) k , (c) ω , (d) the wave speed, and (e) the correct choice of sign in front of ω ?
A continuous sinusoidal longitudinal wave is sent along a very long coiled spring from an attached oscillating source. The wave travels in the negative direction of an x axis; the source frequency is 25 Hz; at any instant the distance between successive points of maximum expansion in the spring is 24 cm; the maximum longitudinal displacement of a spring particle is 0.30 cm; and the particle at x = 0 has zero displacement at time t = 0. If the wave is written in the form s ( x , t ) = s m cos( kx ± ωt ), what are (a) s m , (b) k , (c) ω , (d) the wave speed, and (e) the correct choice of sign in front of ω ?
A continuous sinusoidal longitudinal wave is sent along a very long coiled spring from an attached oscillating source. The wave travels in the negative direction of an x axis; the source frequency is 25 Hz; at any instant the distance between successive points of maximum expansion in the spring is 24 cm; the maximum longitudinal displacement of a spring particle is 0.30 cm; and the particle at x = 0 has zero displacement at time t = 0. If the wave is written in the form s(x, t) = sm cos(kx ± ωt), what are (a) sm, (b) k, (c) ω, (d) the wave speed, and (e) the correct choice of sign in front of ω?
A continuous sinusoidal longitudinal wave is sent along a very long coiled spring from an attached oscillating source. The wave travels in the negative direction of an x axis; the source frequency is 25 Hz; at any instant the distance between successive points of maximum expansion in the spring is 24 cm; the maximum longitudinal displacement of a spring particle is 0.30 cm; and the particle at x = 0 has zero displacement at time t = 0. If the wave is written in the form s(x, t) = sm cos(kx +-vt), what are (a) sm, (b) k, (c) v, (d) the wave speed, and (e) the correct choice of sign in front of v?
A transverse sine wave with an amplitude of 2.50 mm anda wavelength of 1.80 m travels from left to right along a long, horizontal,stretched string with a speed of 36.0 m/s. Take the origin at the left endof the undisturbed string. At time t = 0 the left end of the string has itsmaximum upward displacement. (a) What are the frequency, angular frequency,and wave number of the wave? (b) What is the function y(x, t)that describes the wave? (c) What is y(t) for a particle at the left end of thestring? (d) What is y(t) for a particle 1.35 m to the right of the origin? (e)What is the maximum magnitude of transverse velocity of any particle ofthe string? (f) Find the transverse displacement and the transverse velocityof a particle 1.35 m to the right of the origin at time t = 0.0625 s.
(d)v = 2ghmax
A wave traveling on a string has the following wave function, y(x, t) = Asin(kx + wt + p). At time
t = 0, the point x 0 has a displacement of y(0,0) = 0, and is moving in the negative y -direction.
Which of the following is true about the phase constant and the wave speed direction?
(a) o = "/2, and the wave is moving in the negative x-direction.
(b)y = "2, and the wave is moving in the positive x-direction.
(c) o = n and the wave is moving in the negative x-direction.
(d)g = n and the wave is moving in the positive x-direction.
11)
%3D
%3D
%3D
%3D
Y (90) = Aswyz) =0 or
%3D
Ao las(4)
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.