
(a)
Interpretation:
Three
Concept introduction:
The reaction in which both oxidation and reduction reaction occur simultaneously is called a redox reaction. According to the law of conservation of mass, the mass of all the species in a reaction must be balanced. Therefore balancing is necessary to conserve the mass and even the charge must be balanced to maintain the overall charge of the reaction.
(a)

Answer to Problem 32E
The balanced equations are as follows,
Explanation of Solution
The balanced equation is defined as follows,
The reduction half cell reaction is,
The change in the oxidation number of chromium is from
The oxidation half reaction is,
The change in oxidation number of chromium is from zero to
As the atoms other than hydrogen and oxygen are already balanced, so directly balance the oxygen atom in the reduction half reaction by adding water to right hand side,
Balance the hydrogen atoms in the reduction half reaction by adding
Balance the charge by adding appropriate number of electrons to the left hand side,
As the atoms other than hydrogen and oxygen are already balanced in the oxidation half reaction. Therefore directly balance the oxygen by adding water molecule to the left hand side.
Balance the hydrogen atoms by adding
Balance the charge by adding electrons to the right hand side,
Add the oxidation and reduction half reaction,
Cancel similar terms on both the sides,
To balance the reaction in basic medium,
The final equation is,
(b)
Interpretation:
Three oxidation-reduction reactions are given. The balancing of all the reactions in basic media using half-reaction method is to be done.
Concept introduction:
The reaction in which both oxidation and reduction reaction occur simultaneously is called a redox reaction. According to the law of conservation of mass, the mass of all the species in a reaction must be balanced. Therefore balancing is necessary to conserve the mass and even the charge must be balanced to maintain the overall charge of the reaction.
(b)

Answer to Problem 32E
The balanced equations are as follows,
Explanation of Solution
The balanced equation is defined as follows,
The reduction half cell reaction is,
The change in the oxidation number of manganese is from
The oxidation half reaction is,
The change in oxidation number of sulphur is from
Balance all the atoms except hydrogen and oxygen in the reduction half reaction,
Balance the oxygen atoms by adding water molecules to the right hand side,
Balance the hydrogen atoms by adding
Balance the charge by adding appropriate number of electrons to the left hand side,
All the atoms except hydrogen and oxygen are already balanced and there is no hydrogen or oxygen atom in the reaction. So, directly balance the charge by adding appropriate number of electrons.,
Multiply equation (3) by
Cancel similar terms on both the sides,
In basic medium,
Simplify the equation,
(c)
Interpretation:
Three oxidation-reduction reactions are given. The balancing of all the reactions in basic media using half-reaction method is to be done.
Concept introduction:
The reaction in which both oxidation and reduction reaction occur simultaneously is called a redox reaction. According to the law of conservation of mass, the mass of all the species in a reaction must be balanced. Therefore balancing is necessary to conserve the mass and even the charge must be balanced to maintain the overall charge of the reaction.
(c)

Answer to Problem 32E
The balanced equations are as follows,
Explanation of Solution
The balanced equation is defined as follows,
The reduction half cell reaction is,
The change in the oxidation number of manganese is from
The oxidation half reaction is,
The change in the oxidation number of carbon is from
All the elements except hydrogen and oxygen are already balanced so directly balance the oxygen in the reduction half reaction by adding water to right hand side,
Balance the hydrogen atoms in the reduction half reaction by adding
Balance the charge by adding appropriate number of electrons to the left hand side,
All the atoms except hydrogen and oxygen in oxidation half reaction are already balanced. So, directly balance oxygen atom by adding water molecule to the left hand side,
Balance the hydrogen atom by adding
Balance the charge by adding electrons to the right hand side,
Multiply equation (6) by
Cancel similar terms on both the sides,
In basic medium,
The final equation is,
Want to see more full solutions like this?
Chapter 17 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
- Indicate the product(s) B and C that are formed in the reaction: HN' OCH HC1 B + mayoritario C minoritario OCH3arrow_forwardIndicate the product(s) that are formed in the reaction: NH-NH, OCH3 -H₂O OCH3arrow_forward21.38 Arrange the molecules in each set in order of increasing acidity (from least acidic to most acidic). OH OH SH NH2 8 NH3 OH (b) OH OH OH (c) & & & CH3 NO2 21.39 Explain the trends in the acidity of phenol and the monofluoro derivatives of phenol. OH OH OH OH PK 10.0 PK 8.81 PK 9.28 PK 9.81arrow_forward
- identify which spectrum is for acetaminophen and which is for phenacetinarrow_forwardThe Concept of Aromaticity 21.15 State the number of 2p orbital electrons in each molecule or ion. (a) (b) (e) (f) (c) (d) (h) (i) DA (k) 21.16 Which of the molecules and ions given in Problem 21.15 are aromatic according to the Hückel criteria? Which, if planar, would be antiaromatic? 21.17 Which of the following structures are considered aromatic according to the Hückel criteria? ---0-0 (a) (b) (c) (d) (e) (h) H -H .8.0- 21.18 Which of the molecules and ions from Problem 21.17 have electrons donated by a heteroatom?arrow_forward1. Show the steps necessary to make 2-methyl-4-nonene using a Wittig reaction. Start with triphenylphosphine and an alkyl halide. After that you may use any other organic or inorganic reagents. 2. Write in the product of this reaction: CH3 CH₂ (C6H5)₂CuLi H₂O+arrow_forward
- 3. Name this compound properly, including stereochemistry. H₂C H3C CH3 OH 4. Show the step(s) necessary to transform the compound on the left into the acid on the right. Bri CH2 5. Write in the product of this LiAlH4 Br H₂C OHarrow_forwardWhat are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forwardWhat are the major products of the following enolate alkylation reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forward
- A block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcusarrow_forwardPotential Energy (kJ) 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. AH = -950 kJ AH = 575 kJ (i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s) Ea = 1550 kJ (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2240 kJ Ea = 2350 kJ AH = -825 kJ 2600 2400 2200 2000 1800 1600 1400 1200 1000 a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ 800 600 400 200 0 -200- -400 -600- -800- Reaction Progressarrow_forwardCan u help me figure out the reaction mechanisms for these, idk where to even startarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





