The requirement of electrical energy for the production of Aluminum from Aluminum oxide is given. The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans is to be stated. Concept introduction: For melting of any substance some specific amount of heat is required. Therefore, the amount of heat that is required for melting one mole of substance and that too at its melting point is called the heat of fusion. To determine: The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans. The amount of electrical energy required to produce Aluminum from Aluminum oxide is 54 × 10 6 J . The amount of energy required to melt Aluminum metal is 395.9 × 10 3 J . The energy for melting Aluminum is lower than the energy required for producing Aluminum from Aluminum oxide. The requirement of lower energy for melting Aluminum than required to produce Aluminum from Aluminum oxide makes it an economically feasible process.
The requirement of electrical energy for the production of Aluminum from Aluminum oxide is given. The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans is to be stated. Concept introduction: For melting of any substance some specific amount of heat is required. Therefore, the amount of heat that is required for melting one mole of substance and that too at its melting point is called the heat of fusion. To determine: The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans. The amount of electrical energy required to produce Aluminum from Aluminum oxide is 54 × 10 6 J . The amount of energy required to melt Aluminum metal is 395.9 × 10 3 J . The energy for melting Aluminum is lower than the energy required for producing Aluminum from Aluminum oxide. The requirement of lower energy for melting Aluminum than required to produce Aluminum from Aluminum oxide makes it an economically feasible process.
Solution Summary: The author compares the amount of electrical energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum, and explains the economic feasibility of recycling Aluminum cans.
The requirement of electrical energy for the production of Aluminum from Aluminum oxide is given. The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans is to be stated.
Concept introduction:
For melting of any substance some specific amount of heat is required. Therefore, the amount of heat that is required for melting one mole of substance and that too at its melting point is called the heat of fusion.
To determine: The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans.
The amount of electrical energy required to produce Aluminum from Aluminum oxide is
54×106J.
The amount of energy required to melt Aluminum metal is
395.9×103J.
The energy for melting Aluminum is lower than the energy required for producing Aluminum from Aluminum oxide.
The requirement of lower energy for melting Aluminum than required to produce Aluminum from Aluminum oxide makes it an economically feasible process.
Q2: Group these solvents into either protic solvents or aprotic solvents.
Acetonitrile (CH3CN), H₂O, Acetic acid (CH3COOH), Acetone (CH3COCH3),
CH3CH2OH, DMSO (CH3SOCH3), DMF (HCON(CH3)2), CH3OH
Suppose the rate of evaporation in a hot, dry region is 1.76 meters per year, and the seawater there has a salinity of 35 ‰. Assuming a 93% yield, how much salt (NaCl) can be harvested each year from 1 km2 of solar evaporation ponds that use this seawater as a source?
help
Chapter 17 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card