PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
Question
Book Icon
Chapter 17, Problem 17.29E
Interpretation Introduction

Interpretation:

The temperature that is necessary to have twice as many atoms in the ground state as in the first excited state is to be calculated. The temperature that is necessary to have equal populations in the ground state and the second excited state is to be calculated. The temperature that is necessary to have equal populations in the first and second excited states is to be calculated.

Concept introduction:

When energy of an atom increases, then it gets excited from lower energy state to a higher excited state. The number of atoms present in a particular energy state depends upon the temperature and energy of the state. The ratio of atoms in two states is represented as,

NiNk=gigke(ik)/kT

Where,

gi represents the degeneracy of ith microstate.

i represents the energy of ith microstate.

gk represents the degeneracy of kth microstate.

k represents the energy of kth microstate.

k represents the Boltzmann constant with value 1.38×1023J/K.

T represents the temperature (K).

Blurred answer
Students have asked these similar questions
6. The equilibrium constant for the reaction 2 HBr (g) → H2(g) + Br2(g) Can be expressed by the empirical formula 11790 K In K-6.375 + 0.6415 In(T K-¹) - T Use this formula to determine A,H as a function of temperature. Calculate A,-H at 25 °C and at 100 °C.
3. Nitrosyl chloride, NOCI, decomposes according to 2 NOCI (g) → 2 NO(g) + Cl2(g) Assuming that we start with no moles of NOCl (g) and no NO(g) or Cl2(g), derive an expression for Kp in terms of the equilibrium value of the extent of reaction, Seq, and the pressure, P. Given that K₂ = 2.00 × 10-4, calculate Seq/ of 29/no when P = 0.080 bar. What is the new value по ƒª/ at equilibrium when P = 0.160 bar? Is this result in accord with Le Châtelier's Principle?
Consider the following chemical equilibrium: 2SO2(g) + O2(g) = 2SO3(g) • Write the equilibrium constant expression for this reaction. Now compare it to the equilibrium constant expression for the related reaction: • . 1 SO2(g) + O2(g) = SO3(g) 2 How do these two equilibrium expressions differ? What important principle about the dependence of equilibrium constants on the stoichiometry of a reaction can you learn from this comparison?

Chapter 17 Solutions

PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,