PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17, Problem 17.43E
What change is there in the Sackur-Tetrode equation if
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
8C.4 (a) the moment of inertia of a CH4 molecule is 5.27 x 10^-47 kg m^2. What is the minimum energy needed to start it rotating?
8C.5 (a) use the data in 8C.4 (a) to calculate the energy needed excite a CH4 molecule from a state with l=1 to a state with l=2
Determine the value of x if -84.2 = ln(1.34e+4)x
Consider a collection of 10,000 atoms of rubidium-87, confined inside a box of volume (10-5 m)3.
Suppose that T = 0.9Tc. How many atoms are in the ground state? How close is the chemical potential to the ground-state energy? How many atoms are in each of the (threefold-degenerate) first excited states?
Chapter 17 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
Ch. 17 - Prob. 17.1ECh. 17 - Prob. 17.2ECh. 17 - Prob. 17.3ECh. 17 - Prob. 17.4ECh. 17 - Prob. 17.5ECh. 17 - Prob. 17.6ECh. 17 - Prob. 17.7ECh. 17 - Prob. 17.8ECh. 17 - Prob. 17.9ECh. 17 - Prob. 17.10E
Ch. 17 - Prob. 17.11ECh. 17 - If the ni values are all the same, a shorthand way...Ch. 17 - Prob. 17.13ECh. 17 - Prob. 17.14ECh. 17 - Prob. 17.15ECh. 17 - Prob. 17.16ECh. 17 - Prob. 17.17ECh. 17 - Prob. 17.18ECh. 17 - Prob. 17.19ECh. 17 - Prob. 17.20ECh. 17 - Prob. 17.21ECh. 17 - Prob. 17.22ECh. 17 - Explain why q is a constant for a given system at...Ch. 17 - What is the ratio of ground-state nickel atoms in...Ch. 17 - Ti3+ has the following electronic energy levels:...Ch. 17 - Using the fact that =1/kT, show that equations...Ch. 17 - A one-dimensional particle-in-a-box has a length...Ch. 17 - Prob. 17.28ECh. 17 - Prob. 17.29ECh. 17 - Prob. 17.30ECh. 17 - Prob. 17.31ECh. 17 - What is the value of q at absolute zero? Is it the...Ch. 17 - Prob. 17.33ECh. 17 - Prob. 17.34ECh. 17 - Prob. 17.35ECh. 17 - Prob. 17.36ECh. 17 - Prob. 17.37ECh. 17 - Prob. 17.38ECh. 17 - Prob. 17.39ECh. 17 - Prob. 17.40ECh. 17 - Prob. 17.41ECh. 17 - Prob. 17.42ECh. 17 - What change is there in the Sackur-Tetrode...Ch. 17 - Prob. 17.44ECh. 17 - Prob. 17.45ECh. 17 - Prob. 17.46ECh. 17 - Calculate the thermal de Broglie wavelength of He...Ch. 17 - Prob. 17.48ECh. 17 - Prob. 17.49ECh. 17 - Prob. 17.50ECh. 17 - Prob. 17.51ECh. 17 - Prob. 17.52ECh. 17 - Prob. 17.53ECh. 17 - Use equation 17.56 to determine the change in...Ch. 17 - For an electron that has a velocity of 0.01c where...Ch. 17 - Use the Sackur-Tetrode equation to derive the...Ch. 17 - Prob. 17.57ECh. 17 - Prob. 17.58E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Calculate the change in energy for an electron transitioning from the n= 4 state to the n=3 state. Give answer in attojoules.arrow_forwarddescribe in words how R^2 and the volume function individually contribute to the radial probability functionarrow_forward2.9 Vibrations in crystals. (a) Calculate the average vibrational energy per mole for Si at 400 K to within the limits of the Einstein theory. Let VẸ = 12 x 1012 s-1, (b) If each atom carried three quanta of vibrational energy, how much vibrational energy would the crystal contain?arrow_forward
- Calculate the momentum of an X-ray photon with a wavelength of 0.17nm. How does this value compare with the momentum of a free electron that has been accelerated through a potential difference of 5000 volts? (Hint: electron mass, m, = 9.10938 x 10" kg; electron charge e = 1.602 x 10"C; speed of light e = 3.0 x 10° m.s'; 1.00 J= 1.00 VC; h = 6.626 x 10"J.s. The various energy units are: 1 J=1 kg.m's", 1.00 cV =1VC, leV = 1.602 x 10"J, 1J=6.242 x 10" eV, etc.). %3D %3Darrow_forwardExplain the physical significance of a negative for delta E. Why must E photon always be positive, while delta E can be negative or positive?arrow_forwardSchrodinger and de Broglie suggested a ‘Wave—particle duality" for small particles—that is, if electromagnetic radiation showed some particle-like properties, then perhaps small punicles might exhibit same wave-like properties. Explain. How does the wave mechanical picture of the atom fundamentally differ from the Bohr model? How do wave mechanical arbitals differ from Bohr’s orbits? What does it mean to say that an orbital represents a probability map for an electron?arrow_forward
- Suppose that you have a solution containing a substance whose molecules have two quantum states corresponding to different orientations of a certain subgroup of atoms. The energy difference between these two molecular states is ΔE = 0.130 eV. You are running an experiment where no more than 5% percent of the molecules can be in the higher-energy state, or it will cause unacceptable noise. Can you run the experiment at room temperature, or do you need to cool your solution? Decide by determining the percentage of molecules in the higher-energy state. The percentage of molecules in the higher-energy state is_____ %.arrow_forwardHw.173.arrow_forwardNarrate James Clerk Maxwell’s line of reasoning in linking electromagnetism to light by interpreting his four (4) equations.arrow_forward
- A nitrogen molecule is confined in a cubic box of volume 1.00 m3. (i) Assuming that the molecule has an energy equal to 3/2kT at T = 300 K, what is the value of n = (nx2 + ny2 + nz2)1/2 for this molecule? (ii) What is the energy separation between the levels n and n + 1? (iii) What is the de Broglie wavelength of the molecule?arrow_forwardCalculate the kinetic energy of a single 1H atom moving with an average velocity of 1220 m s−1.Calculate the kinetic energy of 1 mole of such atoms. Calculate the temperature of such a gas.arrow_forwardCalculate the momentum of an X-ray photon with a wavelength of 0.17nm. How does this value compare with the momentum of a free electron that has been accelerated through a potential difference of 5000 volts? (Hint: electron mass, m, = 9.10938 x 10" kg; electron charge e = 1.602 x 10"C; speed of light e = 3.0 x 10* m.s'; 1.00 J= 1.00 VC; h = 6.626 x 10"J.s. The various energy units are: 1 J= 1 kg.m°s³, 1.00 eV =1VC, leV= 1.602 x 10"J, 1J= 6.242 x 10" eV, etc.). %3Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY
QUANTUM MECHANICAL MODEL/Atomic Structure-21E; Author: H to O Chemistry;https://www.youtube.com/watch?v=mYHNUy5hPQE;License: Standard YouTube License, CC-BY