Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977237
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 17.139RP
A uniform slender rod is placed at corner B and is given a slight clockwise motion. Assuming that the corner is sharp and becomes slightly embedded in the end of the rod so that the coefficient of static friction at B is very large, determine (a) the angle
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A garage door is mounted on an overhead rail. The wheels at A and B have rusted so that they do not roll, but rather slide along the track. The coefficient of kinetic friction is 0.55. The distance between the wheels is 2.00 m, and each is 0.50m from the vertical sides of the door. The door is uniform and weighs 850 N. It is pushed to the left at constant speed by a horizontal force F⃗, that is applied as shown in the figure.
If the distance h is 1.60 m, what is the vertical component of the force exerted on the wheel A by the track?
If the distance h is 1.60 m, what is the vertical component of the force exerted on the wheel B by the track?
Find the maximum value hh can have without causing one wheel to leave the track.
the uniform slender rod AB shown of weight w is supported by A peg at C and its end A rests against a vertical wall. the coefficients of friction at A and C are equal to f. find the ratio L/a when motion is impending. if θ=30˚ and f=0.3, find the ratio L/a.
b.7
Chapter 17 Solutions
Vector Mechanics For Engineers
Ch. 17.1 - A round object of mass m and radius r is released...Ch. 17.1 - Prob. 17.CQ2PCh. 17.1 - Prob. 17.CQ3PCh. 17.1 - Prob. 17.CQ4PCh. 17.1 - Slender bar A is rigidly connected to a massless...Ch. 17.1 - A 200-kg flywheel is at rest when a constant 300 N...Ch. 17.1 - The rotor of an electric motor has an angular...Ch. 17.1 - Two uniform disks of the same material are...Ch. 17.1 - Two disks of the same material are attached to a...Ch. 17.1 - Prob. 17.5P
Ch. 17.1 - Prob. 17.6PCh. 17.1 - Prob. 17.7PCh. 17.1 - Prob. 17.8PCh. 17.1 - Prob. 17.9PCh. 17.1 - Prob. 17.10PCh. 17.1 - Each of the gears A and B has a mass of 10 kg and...Ch. 17.1 - Solve Prob. 17.11, assuming that the 6 N m couple...Ch. 17.1 - The gear train shown consists of four gears of the...Ch. 17.1 - Prob. 17.14PCh. 17.1 - Prob. 17.15PCh. 17.1 - Prob. 17.16PCh. 17.1 - The 15-kg rear hatch of a vehicle opens as shown...Ch. 17.1 - A slender 9-lb rod can rotate in a vertical plane...Ch. 17.1 - Prob. 17.19PCh. 17.1 - Prob. 17.20PCh. 17.1 - A collar with a mass of 1 kg is rigidly attached...Ch. 17.1 - Prob. 17.22PCh. 17.1 - Prob. 17.23PCh. 17.1 - The 30-kg turbine disk has a centroidal radius of...Ch. 17.1 - A 100-kg solid cylindrical disk, 800 mm in...Ch. 17.1 - Prob. 17.26PCh. 17.1 - Prob. 17.27PCh. 17.1 - Prob. 17.28PCh. 17.1 - Prob. 17.29PCh. 17.1 - A half-cylinder with mass m and radius r is...Ch. 17.1 - Prob. 17.31PCh. 17.1 - Two uniform cylinders, each of weight W=14 lb and...Ch. 17.1 - Two uniform cylinders, each of weight W=14 lb and...Ch. 17.1 - A bar of mass m=5 kg is held as shown between four...Ch. 17.1 - The 1.5-kg uniform slender bar AB is connected to...Ch. 17.1 - Prob. 17.36PCh. 17.1 - A 5-m-long ladder has a mass of 15 kg and is...Ch. 17.1 - Prob. 17.38PCh. 17.1 - Prob. 17.39PCh. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - Each of the two rods shown is of length L=1 m and...Ch. 17.1 - The 4-kg rod AB is attached to a collar of...Ch. 17.1 - If in Prob. 17.43 the angular velocity of the...Ch. 17.1 - The uniform rods AB and BC are of mass 3 kg and 8...Ch. 17.1 - The uniform rods AB and BC weigh 2.4 kg and 4 kg,...Ch. 17.1 - The 80-mm-radius gear shown has a mass of 5 kg and...Ch. 17.1 - Prob. 17.48PCh. 17.1 - Three shafts and four gears are used to form a...Ch. 17.1 - Prob. 17.50PCh. 17.1 - The drive belt on a vintage sander transmits 12 hp...Ch. 17.2 - Slender bar A is rigidly connected to a massless...Ch. 17.2 - A 1-m-long uniform slender bar AB has an angular...Ch. 17.2 - The 350-kg flywheel of a small hoisting engine has...Ch. 17.2 - A sphere of radius r and mass m is placed on a...Ch. 17.2 - Prob. 17.F3PCh. 17.2 - Prob. 17.52PCh. 17.2 - Prob. 17.53PCh. 17.2 - Prob. 17.54PCh. 17.2 - Prob. 17.55PCh. 17.2 - Prob. 17.56PCh. 17.2 - A disk of constant thickness, initially at rest,...Ch. 17.2 - Prob. 17.58PCh. 17.2 - A cylinder of radius r and weight W with an...Ch. 17.2 - Each of the double pulleys shown has a centroidal...Ch. 17.2 - Prob. 17.61PCh. 17.2 - Prob. 17.62PCh. 17.2 - Prob. 17.63PCh. 17.2 - A tape moves over the two drums shown. Drum A...Ch. 17.2 - Prob. 17.65PCh. 17.2 - Prob. 17.66PCh. 17.2 - Prob. 17.67PCh. 17.2 - Consider a rigid body initially at rest and...Ch. 17.2 - Prob. 17.69PCh. 17.2 - Prob. 17.70PCh. 17.2 - Prob. 17.71PCh. 17.2 - Prob. 17.72PCh. 17.2 - Prob. 17.73PCh. 17.2 - Prob. 17.74PCh. 17.2 - Prob. 17.75PCh. 17.2 - Prob. 17.76PCh. 17.2 - A sphere of radius r and mass m is projected along...Ch. 17.2 - Prob. 17.78PCh. 17.2 - Prob. 17.79PCh. 17.2 - Prob. 17.80PCh. 17.2 - Two 10-lb disks and a small motor are mounted on a...Ch. 17.2 - Prob. 17.82PCh. 17.2 - A 1.6-kg tube AB can slide freely on rod DE, which...Ch. 17.2 - In the helicopter shown, a vertical tail propeller...Ch. 17.2 - Prob. 17.85PCh. 17.2 - The 4-kg uniform disk B is attached to the shaft...Ch. 17.2 - Prob. 17.87PCh. 17.2 - Prob. 17.88PCh. 17.2 - Prob. 17.89PCh. 17.2 - Prob. 17.90PCh. 17.2 - Prob. 17.91PCh. 17.2 - Prob. 17.92PCh. 17.2 - Prob. 17.93PCh. 17.2 - Prob. 17.94PCh. 17.2 - Prob. 17.95PCh. 17.3 - A uniform slender rod AB ofmass m is at rest on a...Ch. 17.3 - Prob. 17.F5PCh. 17.3 - Prob. 17.F6PCh. 17.3 - Prob. 17.96PCh. 17.3 - A bullet weighing 0.08 lb is fired with a...Ch. 17.3 - Prob. 17.98PCh. 17.3 - Prob. 17.99PCh. 17.3 - Prob. 17.100PCh. 17.3 - Prob. 17.101PCh. 17.3 - A 45-g bullet is fired with a velocity of 400 m/s...Ch. 17.3 - Prob. 17.103PCh. 17.3 - Prob. 17.104PCh. 17.3 - A uniform slender rod AB of mass m is at rest on a...Ch. 17.3 - Prob. 17.106PCh. 17.3 - Prob. 17.107PCh. 17.3 - Prob. 17.108PCh. 17.3 - Determine the height h at which the bullet of...Ch. 17.3 - A uniform slender bar of length L=200 mm and mass...Ch. 17.3 - A uniform slender rod of length L is dropped onto...Ch. 17.3 - A uniform slender rod AB has a mass m, a length L,...Ch. 17.3 - Prob. 17.113PCh. 17.3 - The trapeze/lanyard air drop (t/LAD) launch is a...Ch. 17.3 - The uniform rectangular block shown is moving...Ch. 17.3 - The 40-kg gymnast drops from her maximum height of...Ch. 17.3 - Prob. 17.117PCh. 17.3 - A uniformly loaded square crate is released from...Ch. 17.3 - A 1-oz bullet is fired with a horizontal velocity...Ch. 17.3 - For the beam of Prob. 17.119, determine the...Ch. 17.3 - The plank CDEhas a mass of 15 kg and rests on a...Ch. 17.3 - Prob. 17.122PCh. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - Prob. 17.125PCh. 17.3 - A 2-kg solid sphere of radius r=40 mm is dropped...Ch. 17.3 - Member ABC has a mass of 2.4 kg and is attached to...Ch. 17.3 - Member ABC has a mass of 2.4 kg and is attached to...Ch. 17.3 - Sphere A of mass mA=2 kg and radius r=40 mm rolls...Ch. 17.3 - A large 3-lb sphere with a radius r=3 in. is...Ch. 17.3 - Prob. 17.131PCh. 17.3 - Sphere A of mass m and radius r rolls without...Ch. 17.3 - Prob. 17.133PCh. 17.3 - Prob. 17.134PCh. 17 - A uniform disk, initially at rest and of constant...Ch. 17 - Prob. 17.136RPCh. 17 - Prob. 17.137RPCh. 17 - You are asked to analyze a catcher for a small...Ch. 17 - A uniform slender rod is placed at corner B and is...Ch. 17 - Prob. 17.140RPCh. 17 - Prob. 17.141RPCh. 17 - Prob. 17.142RPCh. 17 - Prob. 17.143RPCh. 17 - A square block of mass m is falling with a...Ch. 17 - Prob. 17.145RPCh. 17 - A 1.8-lb javelin DE impacts a 10-lb slender rod...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The cone clutch transmits the torque C through a conical friction surface with cone angle . The inner and outer radii of the friction surface are a and b, respectively. The left half of the clutch is keyed to the shaft, and the right half drives a machine (not shown) through a gear attached to its outer rim. Assuming uniform pressure on the friction surface, show that the maximum torque that can be transmitted by the clutch isarrow_forwardThe square-threaded worm gear shown has a mean radius of 2 in. and a lead of 0.5 in. The large gear is subjected to a constant clockwise couple of 9.6 kip.in Knowing that the coefficient of static friction between the two gears is 0.12, determine the couple that must be applied to shaft AB in order to rotate the large gear counterclockwise. Neglect friction in the bearings at A, B, and C.arrow_forwardTwo machines are coupled by means of a clutch plate with 2 contact surfaces. The plate has an inner diameter of 125 mm and an outer diameter of 240 mm and the coefficient of friction between mating surfaces is 0.3. It is assumed that shafts of both machines are co-axial and the driving shaft is rotating at a constant speed of 360 rev/min when it is suddenly brought in contact with the driven shaft/machine initially rotating at 35 rev/min. The Moment of Inertia of the driven machine is 21 kgm2. A slippage period of 6.4 sec is observed while the driven machine is brought to the full speed of the driving shaft. Analyse the frictional power transmission and calculate: The magnitude of the torque necessary to cause the described acceleration of the driven shaft : Tdr Nm The driven machine will accelerate at a rate of One possible correct answer is: 5.3178000646702 rad/s/s,while the motor/driving shaft will have an acceleration of One possible correct answer is: 0 rad/s? The normal force…arrow_forward
- Two machines are coupled by means of a clutch plate with 2 contact surfaces. The plate has an inner diameter of 125 mm and an outer diameter of 200 mm and the coefficient of friction between mating surfaces is 0.35. It is assumed that shafts of both machines are co-axial and the driving shaft is rotating at a constant speed of 240 rev/min when it is suddenly brought in contact with the driven shaft/machine initially rotating at 20 rev/min. The Moment of Inertia of the driven machine is 21 kgm2. A slippage period of 6.8 sec is observed while the driven machine is brought to the full speed of the driving shaft. Analyse the frictional power transmission and calculate: The magnitude of the torque necessary to cause the described acceleration of the driven shaft :arrow_forwardA 3.9-kg sphere S is being moved in a vertical plane by a robotic arm. When the angle 0 is 27°, the angular velocity of the arm about a horizontal axis through O is 52 deg/s clockwise and its angular acceleration is 179 deg/s² counterclockwise. In addition, the hydraulic element is being shortened at the constant rate of 600 mm/s. Determine the necessary minimum gripping force P if the coefficient of static friction between the sphere and the gripping surfaces is 0.46. Compare P with the minimum gripping force P required to hold the sphere in static equilibrium in the 27° position. 2.0 m Answers: P= Ps= i Z Z N Narrow_forwardA differential band brake is used to retard a shaft carrying flywheel weighing 3 kN with radius of gyration350 mm. If the brake drum diameter is 250 mm and coefficient of friction is 0.15, determine thefollowing: (i) the braking torque when an effort of 150 N is applied at the end of the lever, (ii) number ofrevolutions of the flywheel before it comes to rest, and (iii) time taken by the flywheel to come to rest.The drum rotates at 500 rpm in clockwise direction and the layout of the brake is as shown in figure.arrow_forward
- A 3.5-kg sphere S is being moved in a vertical plane by a robotic arm. When the angle is 35°, the angular velocity of the arm about a horizontal axis through O is 53 deg/s clockwise and its angular acceleration is 173 deg/s² counterclockwise. In addition, the hydraulic element is being shortened at the constant rate of 420 mm/s. Determine the necessary minimum gripping force P if the coefficient of static friction between the sphere and the gripping surfaces is 0.41. Compare P with the minimum gripping force P, required to hold the sphere in static equilibrium in the 35° position. p 1.8 m Answers: P = P₁ = i i $ N Narrow_forwardThe 200mm 1.2kg BD rod; and the 1.5 kg piston P are connected through the mechanism shown. 90mm AB crank rotates at constant 1200 rpm counterclockwise and angle θ=50 °. Determine the reactions at joints B and D, do not consider friction between cylinder and piston P.arrow_forwardA 1.6-kg sphere S is being moved in a vertical plane by a robotic arm. When the angle e is 38, the angular velocity of the arm about a horizontal axis through O is 55 deg/s clockwise and its angular acceleration is 205 deg/s² counterclockwise. In addition, the hydraulic element is being shortened at the constant rate of 440 mm/s. Determine the necessary minimum gripping force Pif the coefficient of static friction between the sphere and the gripping surfaces is 0.51. Compare Pwith the minimum gripping force P; required to hold the sphere in static equilibrium in the 38° position. 1.5 m Answers: P = i Ps= iarrow_forward
- A 2.6-kg sphere S is being moved in a vertical plane by a robotic arm. When the angle 0 is 39°, the angular velocity of the arm about a horizontal axis through O is 52 deg/s clockwise and its angular acceleration is 220 deg/s2 counterclockwise. In addition, the hydraulic element is being shortened at the constant rate of 520 mm/s. Determine the necessary minimum gripping force Pif the coefficient of static friction between the sphere and the gripping surfaces is 0.61. Compare Pwith the minimum gripping force P, required to hold the sphere in static equilibrium in the 39° position. 2.0 m Answers: P = i P3 = Narrow_forwardA 2.6-kg sphere S is being moved in a vertical plane by a robotic arm. When the angle 0 is 39°, the angular velocity of the arm about a horizontal axis through O is 52 deg/s clockwise and its angular acceleration is 220 deg/s² counterclockwise. In addition, the hydraulic element is being shortened at the constant rate of 520 mm/s. Determine the necessary minimum gripping force Pif the coefficient of static friction between the sphere and the gripping surfaces is 0.61. Compare P with the minimum gripping force P; required to hold the sphere in static equilibrium in the 39° position. 2.0 m Answers: P = i 16.92 N P3 = 20.90 Narrow_forward1. Block A has a weight of 350 lb, and is attached to the cylinder/hub arrangement B as shown. The pulleys have no friction and negligible inertia. If the cylinder weights 340 lb (l = 30 ft-lb-s), use the dynamic equilibrium method to determine: %3D (a) acceleration of the center of mass of cylinder/hub; (b) minimum coefficient of friction at the surface. Dia. 2 ft B. Dia, 5 ftarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY