Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977237
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.3, Problem 17.104P
To determine
The angular velocity of the rod immediately after the impact
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The uniform slender rod AB of weight 5 lb and length 30 in. forms an angle ß = 30° with the vertical as it strikes the
smooth corner shown with a vertical velocity v₁ of magnitude 13 ft/s and no angular velocity. Assuming that the
impact is perfectly plastic, determine the angular velocity of the rod immediately after the impact.
B
The angular velocity of the rod immediately after the impact is
5.2
rad/s O.
The uniform slender rod AB of weight 5 lb and length 30 in. forms an angle = 30° with the vertical as it
strikes the smooth corner shown with a vertical velocity v₁ of magnitude 17 ft/s and no angular velocity.
Assuming that the impact is perfectly plastic, determine the angular velocity of the rod immediately after
the impact.
В
A
G
B
The angular velocity of the rod immediately after the impact is
rad/s O.
The slender bar of mass m = 2.0 kg and length /= 875 mm is released from rest in the horizontal position shown. If point A of the bar
becomes attached to the pivot at B upon impact, determine the magnitude of the angular velocity w of the bar immediately after
impact. The distance x = 225 mm and the distance h = 395 mm.
Answer: w=
Al
rad/s
Chapter 17 Solutions
Vector Mechanics For Engineers
Ch. 17.1 - A round object of mass m and radius r is released...Ch. 17.1 - Prob. 17.CQ2PCh. 17.1 - Prob. 17.CQ3PCh. 17.1 - Prob. 17.CQ4PCh. 17.1 - Slender bar A is rigidly connected to a massless...Ch. 17.1 - A 200-kg flywheel is at rest when a constant 300 N...Ch. 17.1 - The rotor of an electric motor has an angular...Ch. 17.1 - Two uniform disks of the same material are...Ch. 17.1 - Two disks of the same material are attached to a...Ch. 17.1 - Prob. 17.5P
Ch. 17.1 - Prob. 17.6PCh. 17.1 - Prob. 17.7PCh. 17.1 - Prob. 17.8PCh. 17.1 - Prob. 17.9PCh. 17.1 - Prob. 17.10PCh. 17.1 - Each of the gears A and B has a mass of 10 kg and...Ch. 17.1 - Solve Prob. 17.11, assuming that the 6 N m couple...Ch. 17.1 - The gear train shown consists of four gears of the...Ch. 17.1 - Prob. 17.14PCh. 17.1 - Prob. 17.15PCh. 17.1 - Prob. 17.16PCh. 17.1 - The 15-kg rear hatch of a vehicle opens as shown...Ch. 17.1 - A slender 9-lb rod can rotate in a vertical plane...Ch. 17.1 - Prob. 17.19PCh. 17.1 - Prob. 17.20PCh. 17.1 - A collar with a mass of 1 kg is rigidly attached...Ch. 17.1 - Prob. 17.22PCh. 17.1 - Prob. 17.23PCh. 17.1 - The 30-kg turbine disk has a centroidal radius of...Ch. 17.1 - A 100-kg solid cylindrical disk, 800 mm in...Ch. 17.1 - Prob. 17.26PCh. 17.1 - Prob. 17.27PCh. 17.1 - Prob. 17.28PCh. 17.1 - Prob. 17.29PCh. 17.1 - A half-cylinder with mass m and radius r is...Ch. 17.1 - Prob. 17.31PCh. 17.1 - Two uniform cylinders, each of weight W=14 lb and...Ch. 17.1 - Two uniform cylinders, each of weight W=14 lb and...Ch. 17.1 - A bar of mass m=5 kg is held as shown between four...Ch. 17.1 - The 1.5-kg uniform slender bar AB is connected to...Ch. 17.1 - Prob. 17.36PCh. 17.1 - A 5-m-long ladder has a mass of 15 kg and is...Ch. 17.1 - Prob. 17.38PCh. 17.1 - Prob. 17.39PCh. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - Each of the two rods shown is of length L=1 m and...Ch. 17.1 - The 4-kg rod AB is attached to a collar of...Ch. 17.1 - If in Prob. 17.43 the angular velocity of the...Ch. 17.1 - The uniform rods AB and BC are of mass 3 kg and 8...Ch. 17.1 - The uniform rods AB and BC weigh 2.4 kg and 4 kg,...Ch. 17.1 - The 80-mm-radius gear shown has a mass of 5 kg and...Ch. 17.1 - Prob. 17.48PCh. 17.1 - Three shafts and four gears are used to form a...Ch. 17.1 - Prob. 17.50PCh. 17.1 - The drive belt on a vintage sander transmits 12 hp...Ch. 17.2 - Slender bar A is rigidly connected to a massless...Ch. 17.2 - A 1-m-long uniform slender bar AB has an angular...Ch. 17.2 - The 350-kg flywheel of a small hoisting engine has...Ch. 17.2 - A sphere of radius r and mass m is placed on a...Ch. 17.2 - Prob. 17.F3PCh. 17.2 - Prob. 17.52PCh. 17.2 - Prob. 17.53PCh. 17.2 - Prob. 17.54PCh. 17.2 - Prob. 17.55PCh. 17.2 - Prob. 17.56PCh. 17.2 - A disk of constant thickness, initially at rest,...Ch. 17.2 - Prob. 17.58PCh. 17.2 - A cylinder of radius r and weight W with an...Ch. 17.2 - Each of the double pulleys shown has a centroidal...Ch. 17.2 - Prob. 17.61PCh. 17.2 - Prob. 17.62PCh. 17.2 - Prob. 17.63PCh. 17.2 - A tape moves over the two drums shown. Drum A...Ch. 17.2 - Prob. 17.65PCh. 17.2 - Prob. 17.66PCh. 17.2 - Prob. 17.67PCh. 17.2 - Consider a rigid body initially at rest and...Ch. 17.2 - Prob. 17.69PCh. 17.2 - Prob. 17.70PCh. 17.2 - Prob. 17.71PCh. 17.2 - Prob. 17.72PCh. 17.2 - Prob. 17.73PCh. 17.2 - Prob. 17.74PCh. 17.2 - Prob. 17.75PCh. 17.2 - Prob. 17.76PCh. 17.2 - A sphere of radius r and mass m is projected along...Ch. 17.2 - Prob. 17.78PCh. 17.2 - Prob. 17.79PCh. 17.2 - Prob. 17.80PCh. 17.2 - Two 10-lb disks and a small motor are mounted on a...Ch. 17.2 - Prob. 17.82PCh. 17.2 - A 1.6-kg tube AB can slide freely on rod DE, which...Ch. 17.2 - In the helicopter shown, a vertical tail propeller...Ch. 17.2 - Prob. 17.85PCh. 17.2 - The 4-kg uniform disk B is attached to the shaft...Ch. 17.2 - Prob. 17.87PCh. 17.2 - Prob. 17.88PCh. 17.2 - Prob. 17.89PCh. 17.2 - Prob. 17.90PCh. 17.2 - Prob. 17.91PCh. 17.2 - Prob. 17.92PCh. 17.2 - Prob. 17.93PCh. 17.2 - Prob. 17.94PCh. 17.2 - Prob. 17.95PCh. 17.3 - A uniform slender rod AB ofmass m is at rest on a...Ch. 17.3 - Prob. 17.F5PCh. 17.3 - Prob. 17.F6PCh. 17.3 - Prob. 17.96PCh. 17.3 - A bullet weighing 0.08 lb is fired with a...Ch. 17.3 - Prob. 17.98PCh. 17.3 - Prob. 17.99PCh. 17.3 - Prob. 17.100PCh. 17.3 - Prob. 17.101PCh. 17.3 - A 45-g bullet is fired with a velocity of 400 m/s...Ch. 17.3 - Prob. 17.103PCh. 17.3 - Prob. 17.104PCh. 17.3 - A uniform slender rod AB of mass m is at rest on a...Ch. 17.3 - Prob. 17.106PCh. 17.3 - Prob. 17.107PCh. 17.3 - Prob. 17.108PCh. 17.3 - Determine the height h at which the bullet of...Ch. 17.3 - A uniform slender bar of length L=200 mm and mass...Ch. 17.3 - A uniform slender rod of length L is dropped onto...Ch. 17.3 - A uniform slender rod AB has a mass m, a length L,...Ch. 17.3 - Prob. 17.113PCh. 17.3 - The trapeze/lanyard air drop (t/LAD) launch is a...Ch. 17.3 - The uniform rectangular block shown is moving...Ch. 17.3 - The 40-kg gymnast drops from her maximum height of...Ch. 17.3 - Prob. 17.117PCh. 17.3 - A uniformly loaded square crate is released from...Ch. 17.3 - A 1-oz bullet is fired with a horizontal velocity...Ch. 17.3 - For the beam of Prob. 17.119, determine the...Ch. 17.3 - The plank CDEhas a mass of 15 kg and rests on a...Ch. 17.3 - Prob. 17.122PCh. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - Prob. 17.125PCh. 17.3 - A 2-kg solid sphere of radius r=40 mm is dropped...Ch. 17.3 - Member ABC has a mass of 2.4 kg and is attached to...Ch. 17.3 - Member ABC has a mass of 2.4 kg and is attached to...Ch. 17.3 - Sphere A of mass mA=2 kg and radius r=40 mm rolls...Ch. 17.3 - A large 3-lb sphere with a radius r=3 in. is...Ch. 17.3 - Prob. 17.131PCh. 17.3 - Sphere A of mass m and radius r rolls without...Ch. 17.3 - Prob. 17.133PCh. 17.3 - Prob. 17.134PCh. 17 - A uniform disk, initially at rest and of constant...Ch. 17 - Prob. 17.136RPCh. 17 - Prob. 17.137RPCh. 17 - You are asked to analyze a catcher for a small...Ch. 17 - A uniform slender rod is placed at corner B and is...Ch. 17 - Prob. 17.140RPCh. 17 - Prob. 17.141RPCh. 17 - Prob. 17.142RPCh. 17 - Prob. 17.143RPCh. 17 - A square block of mass m is falling with a...Ch. 17 - Prob. 17.145RPCh. 17 - A 1.8-lb javelin DE impacts a 10-lb slender rod...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The gear shown has a radius R=150mm and a radius of gyration k =125mm. The gear is rolling without sliding with a velocity V1 of magnitude 3 m/s when it strikes a step of height h=75mm. Because the edge of the step engages the gear teeth, no slipping occurs between the gear and the step. Assuming perfectly plastic impact, determine the angular velocity of the gear after it has rotated to the top of the step.arrow_forwardThe 25-kg cylinder A is free to slide along rod BC. When the cylinder is at x=0, the 46-kg circular disk D is rotating with an angular velocity of 4.8 rad/s. (Figure 1) If the cylinder is given a slight push, determine the angular velocity of the disk when the cylinder strikes B at x=600mm. Neglect the mass of the brackets and the smooth rod.arrow_forwardNiloarrow_forward
- The 11-kg homogeneous plank of length L = 9.4 m and width d = 0.5 m rotates about trestle A and strikes trestle B without rebounding. If the angular velocity of the plank, just before the impact, is 2 rad/s clockwise, determine the angular speed of the plank just after impact. The distances from the tips of the plank to the trestles are al and bL, where a = 0.11 and b = 0.33. bl L(1 -a - b) al L(1 – a – b) A Barrow_forwardThe slender L-shaped bar ABCD mass 15 kg/m is free to rotate about thepin at B. The spring connected to the bar at A has a free length of 7 ft, and itsstiffness is 180 N/m. If the system is released from rest in the position shown,determine the angular velocity of the bar when A is directly above B.arrow_forwardThe circular concrete culvert rolls with an angular velocity of w=0.58 rad/s when the man is at the position shown. At this instant the center of gravity of the culvert and the man is located at point G, and the radius of gyration about G is kg = 3.2 ft. (Figure 1) Figure @ 4 ft 0.5 ft 1 of 1 Part A Determine the angular acceleration of the culvert. The combined weight of the culvert and the man is 500 lb. Assume that the culvert rolls without slipping, and the man does not move within the culvert. Express your answer to three significant figures and include the appropriate units. α= Submit μA Value Provide Feedback Request Answer Units ***** ? Next >arrow_forward
- The circular concrete culvert rolls with an angular velocity of w = 0.58 rad/s when the man is at the position shown. At this instant the center of gravity of the culvert and the man is located at point G, and the radius of gyration about G is KG = 3.7 ft. (Figure 1) Figure W 4 ft 0.5 ft 1 of 1 Part A Determine the angular acceleration of the culvert. The combined weight of the culvert and the man is 500 lb. Assume that the culvert rolls without slipping, and the man does not move within the culvert. Express your answer to three significant figures and include the appropriate units. α= Submit μA Value Provide Feedback Request Answer Units = ? Next >arrow_forwardTwo wheels of negligible weight are mounted at corners 4 and B of the rectangular 50-lb plate. If the plate is released from rest at 0= 60°, determine its angular velocity at the instant just before 6 30°.arrow_forwardThe disk with radius r is rolling (without slipping) with angular velocity through the bottom of the circular path of radius R. If @= 2 rad/sec, R = 0.5 m, r = 0.2 m, and the mass of the disk is 3 kg, calculate the magnitude of the normal force exerted by the path on the disk at that instant. Present your answer in Newtons using 3 significant figures. ໙arrow_forward
- The 15 kg pendulum shown has its mass center at G and a radius of gyration about its mass center of kG = 200 mm and was released from rest when 0 = 0°. Spring AB has a stiffness of k = 200 N/m and is un-stretched when 0 = 90°. The angular velocity of the pendulum in rad/s at the instant 0 = 90° is: -0.6 m- а, 3.2 · b. 4.3 m . с. 3.6 0.1 m · d. 4.4 О е. 3.4 O f. 3.8 O g. 4.6arrow_forwardThe circular concrete culvert rolls with an angular velocity of w = 0.48 rad/s when the man is at the position shown. At this instant the center of gravity of the culvert and the man is located at point G, and the radius of gyration about G is ke = 3.6 ft. 4 ft 0.5 ft Part A Determine the angular acceleration of the culvert. The combined weight of the culvert and the man is 500 Ib. Assume that the culvert rolls without slipping. and the man does not move within the culvert. Express your answer to three significant figures and include the appropriate units. ANSWER: a =arrow_forwardThe figure shows the cross section of a uniform 239-lb ventilator door hinged about its upper horizontal edge at O. The door is controlled by the spring-loaded cable which passes over the small pulley at A. The spring has a stiffness of 16.6 lb per foot of stretch and is undeformed when 8-0. If the door is released from rest in the horizontal position, determine the maximum angular velocity reached by the door and the corresponding angle 0. Answer: @max 4.2¹ rad/sec at 8-iarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY