Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977237
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.3, Problem 17.113P
To determine
The required spring constant of the spring for the below mentioned figure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 2: A point-mass M of mass m is tied to a string which winds around a cylinder like
a bobbin. The string is pinned on the cylinder at some point, and P denotes the point at which
the string leaves the bobbin and starting from which it is taut.
The cylinder has radius a and rotates at a constant rate around the vertical axis of the fixed
frame F (which is also the axis of symmetry of the bobbin). The motion takes place in the hori-
zontal plane, which is assumed frictionless. See figure.
(a) Find a relationship between l, a and expressing that the length of the string is constant
(b) Compute the velocity and acceleration of point M with respect to F.
(c) Apply LMB in F to the system consisting of the point mass M alone (don't forget to start
with a free body diagram!). Deduce a differential equation for l as well as the value of the
string's tension in terms of the other parameters.
(d) (bonus) Solve the differential equation for l.
eo
Ω
Mas
P
M
FIGURE 1 - The spinning bobbin.…
3.32). As shown in Figure 3, a yo-yo toy is formed by wrapping a massless cord around adisk of radius R= 0.2 m and mass M=3 kg. The cord is vertical and its top end is fixed and the disk isinitially stationary. The cord remains vertical for the entire motion and does not slide on the disk.When the disk is released from rest, it falls down by a distance H=0.8 m, The moment of inertia ofthe disk around its center is I disk=1/2mdiskR^2a . Find the angular acceleration of the disk when it is lowered by a distance H.b . Find the angular velocity of the disk when it is lowered by a distance H.
!
Chapter 17 Solutions
Vector Mechanics For Engineers
Ch. 17.1 - A round object of mass m and radius r is released...Ch. 17.1 - Prob. 17.CQ2PCh. 17.1 - Prob. 17.CQ3PCh. 17.1 - Prob. 17.CQ4PCh. 17.1 - Slender bar A is rigidly connected to a massless...Ch. 17.1 - A 200-kg flywheel is at rest when a constant 300 N...Ch. 17.1 - The rotor of an electric motor has an angular...Ch. 17.1 - Two uniform disks of the same material are...Ch. 17.1 - Two disks of the same material are attached to a...Ch. 17.1 - Prob. 17.5P
Ch. 17.1 - Prob. 17.6PCh. 17.1 - Prob. 17.7PCh. 17.1 - Prob. 17.8PCh. 17.1 - Prob. 17.9PCh. 17.1 - Prob. 17.10PCh. 17.1 - Each of the gears A and B has a mass of 10 kg and...Ch. 17.1 - Solve Prob. 17.11, assuming that the 6 N m couple...Ch. 17.1 - The gear train shown consists of four gears of the...Ch. 17.1 - Prob. 17.14PCh. 17.1 - Prob. 17.15PCh. 17.1 - Prob. 17.16PCh. 17.1 - The 15-kg rear hatch of a vehicle opens as shown...Ch. 17.1 - A slender 9-lb rod can rotate in a vertical plane...Ch. 17.1 - Prob. 17.19PCh. 17.1 - Prob. 17.20PCh. 17.1 - A collar with a mass of 1 kg is rigidly attached...Ch. 17.1 - Prob. 17.22PCh. 17.1 - Prob. 17.23PCh. 17.1 - The 30-kg turbine disk has a centroidal radius of...Ch. 17.1 - A 100-kg solid cylindrical disk, 800 mm in...Ch. 17.1 - Prob. 17.26PCh. 17.1 - Prob. 17.27PCh. 17.1 - Prob. 17.28PCh. 17.1 - Prob. 17.29PCh. 17.1 - A half-cylinder with mass m and radius r is...Ch. 17.1 - Prob. 17.31PCh. 17.1 - Two uniform cylinders, each of weight W=14 lb and...Ch. 17.1 - Two uniform cylinders, each of weight W=14 lb and...Ch. 17.1 - A bar of mass m=5 kg is held as shown between four...Ch. 17.1 - The 1.5-kg uniform slender bar AB is connected to...Ch. 17.1 - Prob. 17.36PCh. 17.1 - A 5-m-long ladder has a mass of 15 kg and is...Ch. 17.1 - Prob. 17.38PCh. 17.1 - Prob. 17.39PCh. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - Each of the two rods shown is of length L=1 m and...Ch. 17.1 - The 4-kg rod AB is attached to a collar of...Ch. 17.1 - If in Prob. 17.43 the angular velocity of the...Ch. 17.1 - The uniform rods AB and BC are of mass 3 kg and 8...Ch. 17.1 - The uniform rods AB and BC weigh 2.4 kg and 4 kg,...Ch. 17.1 - The 80-mm-radius gear shown has a mass of 5 kg and...Ch. 17.1 - Prob. 17.48PCh. 17.1 - Three shafts and four gears are used to form a...Ch. 17.1 - Prob. 17.50PCh. 17.1 - The drive belt on a vintage sander transmits 12 hp...Ch. 17.2 - Slender bar A is rigidly connected to a massless...Ch. 17.2 - A 1-m-long uniform slender bar AB has an angular...Ch. 17.2 - The 350-kg flywheel of a small hoisting engine has...Ch. 17.2 - A sphere of radius r and mass m is placed on a...Ch. 17.2 - Prob. 17.F3PCh. 17.2 - Prob. 17.52PCh. 17.2 - Prob. 17.53PCh. 17.2 - Prob. 17.54PCh. 17.2 - Prob. 17.55PCh. 17.2 - Prob. 17.56PCh. 17.2 - A disk of constant thickness, initially at rest,...Ch. 17.2 - Prob. 17.58PCh. 17.2 - A cylinder of radius r and weight W with an...Ch. 17.2 - Each of the double pulleys shown has a centroidal...Ch. 17.2 - Prob. 17.61PCh. 17.2 - Prob. 17.62PCh. 17.2 - Prob. 17.63PCh. 17.2 - A tape moves over the two drums shown. Drum A...Ch. 17.2 - Prob. 17.65PCh. 17.2 - Prob. 17.66PCh. 17.2 - Prob. 17.67PCh. 17.2 - Consider a rigid body initially at rest and...Ch. 17.2 - Prob. 17.69PCh. 17.2 - Prob. 17.70PCh. 17.2 - Prob. 17.71PCh. 17.2 - Prob. 17.72PCh. 17.2 - Prob. 17.73PCh. 17.2 - Prob. 17.74PCh. 17.2 - Prob. 17.75PCh. 17.2 - Prob. 17.76PCh. 17.2 - A sphere of radius r and mass m is projected along...Ch. 17.2 - Prob. 17.78PCh. 17.2 - Prob. 17.79PCh. 17.2 - Prob. 17.80PCh. 17.2 - Two 10-lb disks and a small motor are mounted on a...Ch. 17.2 - Prob. 17.82PCh. 17.2 - A 1.6-kg tube AB can slide freely on rod DE, which...Ch. 17.2 - In the helicopter shown, a vertical tail propeller...Ch. 17.2 - Prob. 17.85PCh. 17.2 - The 4-kg uniform disk B is attached to the shaft...Ch. 17.2 - Prob. 17.87PCh. 17.2 - Prob. 17.88PCh. 17.2 - Prob. 17.89PCh. 17.2 - Prob. 17.90PCh. 17.2 - Prob. 17.91PCh. 17.2 - Prob. 17.92PCh. 17.2 - Prob. 17.93PCh. 17.2 - Prob. 17.94PCh. 17.2 - Prob. 17.95PCh. 17.3 - A uniform slender rod AB ofmass m is at rest on a...Ch. 17.3 - Prob. 17.F5PCh. 17.3 - Prob. 17.F6PCh. 17.3 - Prob. 17.96PCh. 17.3 - A bullet weighing 0.08 lb is fired with a...Ch. 17.3 - Prob. 17.98PCh. 17.3 - Prob. 17.99PCh. 17.3 - Prob. 17.100PCh. 17.3 - Prob. 17.101PCh. 17.3 - A 45-g bullet is fired with a velocity of 400 m/s...Ch. 17.3 - Prob. 17.103PCh. 17.3 - Prob. 17.104PCh. 17.3 - A uniform slender rod AB of mass m is at rest on a...Ch. 17.3 - Prob. 17.106PCh. 17.3 - Prob. 17.107PCh. 17.3 - Prob. 17.108PCh. 17.3 - Determine the height h at which the bullet of...Ch. 17.3 - A uniform slender bar of length L=200 mm and mass...Ch. 17.3 - A uniform slender rod of length L is dropped onto...Ch. 17.3 - A uniform slender rod AB has a mass m, a length L,...Ch. 17.3 - Prob. 17.113PCh. 17.3 - The trapeze/lanyard air drop (t/LAD) launch is a...Ch. 17.3 - The uniform rectangular block shown is moving...Ch. 17.3 - The 40-kg gymnast drops from her maximum height of...Ch. 17.3 - Prob. 17.117PCh. 17.3 - A uniformly loaded square crate is released from...Ch. 17.3 - A 1-oz bullet is fired with a horizontal velocity...Ch. 17.3 - For the beam of Prob. 17.119, determine the...Ch. 17.3 - The plank CDEhas a mass of 15 kg and rests on a...Ch. 17.3 - Prob. 17.122PCh. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - Prob. 17.125PCh. 17.3 - A 2-kg solid sphere of radius r=40 mm is dropped...Ch. 17.3 - Member ABC has a mass of 2.4 kg and is attached to...Ch. 17.3 - Member ABC has a mass of 2.4 kg and is attached to...Ch. 17.3 - Sphere A of mass mA=2 kg and radius r=40 mm rolls...Ch. 17.3 - A large 3-lb sphere with a radius r=3 in. is...Ch. 17.3 - Prob. 17.131PCh. 17.3 - Sphere A of mass m and radius r rolls without...Ch. 17.3 - Prob. 17.133PCh. 17.3 - Prob. 17.134PCh. 17 - A uniform disk, initially at rest and of constant...Ch. 17 - Prob. 17.136RPCh. 17 - Prob. 17.137RPCh. 17 - You are asked to analyze a catcher for a small...Ch. 17 - A uniform slender rod is placed at corner B and is...Ch. 17 - Prob. 17.140RPCh. 17 - Prob. 17.141RPCh. 17 - Prob. 17.142RPCh. 17 - Prob. 17.143RPCh. 17 - A square block of mass m is falling with a...Ch. 17 - Prob. 17.145RPCh. 17 - A 1.8-lb javelin DE impacts a 10-lb slender rod...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A string is wrapped around a uniform disk of mass M = 2.1 kg and radius R = 0.12 m. (Recall that the moment of inertia of a uniform disk is (1/2) MR².) Attached to the disk are four low-mass rods of radius b = 0.16 m, each with a small mass m = 0.7 kg at the end. The device is initially at rest on a nearly frictionless surface. Then you pull the string with a constant force F = 30 N. At the instant when the center of the disk has moved a distance d = 0.041 m, a length w = 0.033 m of string has unwound off the disk. •m bi m m Part 1 M, R Part 2 d V= 0.708548386 Your answer is correct. Part 3 m (a) At this instant, what is the speed of the center of the apparatus? @01 = i 5.08017 Save for Later F Your answer is incorrect. (b) At this instant, what is the angular speed of the apparatus? 002 = i w+d Save for Later m/s eTextbook and Media F radians/s (c) You keep pulling with constant force 30 N for an additional 0.042 s. Now what is the angular speed of the apparatus? radians/s Attempts: 1…arrow_forward7. A cage of mass 2500 kg is raised and lowered by a winding drum of 1.5 m diameter. A brake drum is attached to the winding drum and the combined mass of the drums is 1000 kg and their radius of gyration is 1.2 m. The maximum speed of descent is 6 m/s and when descending at this speed, the brake must be capable of stopping the load in 6 m. Find 1. the tension of the rope during stopping at the above rate, 2. the friction torque necessary at the brake, neglecting the inertia of the rope, and 3. In a descent of 30 m, the load starts from rest and falls freely until its speed is 6 m/s. The brake is then applied and the speed is kept constant at 6 m/s until the load is 10 m from the bottom. The brake is then tightened so as to give uniform retardation, and the load is brought to rest at the bottom. Find the total time of descent. [Ans. 32 kN ; 29.78 kN-m ; 7.27 s]arrow_forwardQ4. A particle, of mass 2 kg, is attached to one end of a light inextensible string. The other end is fixed to the point O. The particle is set into motion, so that it describes a horizontal circle of radius 0.6 metres, with the string at an angle of 30° to the vertical. The centre of the circle is vertically below O. (a) Show that the tension in the string is 22.6 N, correct to three significant figures. (b) Find the speed of the particle. 30° 0.6m Iarrow_forward
- A thin circular disk of radius R and mass M has an axle through it close to its outer edge. The disk is rotated through 90 deg and then allowed to drop. (The figure shows the disk in its initial position before it is released, and its final position when point P passes through the lowest point). a) If the zero of height is taken to be the location of the COM when the disk is in its final position, what is the energy of the disk before it is release? b) What is the moment of inertia of the disk about the axle? c) What is the angular speed of the disk when it is in the final position? d) What is the speed of point P, on the outer edge of the disk, as it passes through the lowest point in its swing?arrow_forwardThe illustrated system shows a pulley A that rotates under the effect of an external torque M. The belt that surrounds pulley A tries to stop it unsuccessfully, resulting in pulley A rotating at a constant speed while the belt is fixed. The belt in turn passes through an idle pulley B (frictionless pulley) and pulls a block of mass m2 that is attached to the wall by a spring. If it is considered that the spring has already been stretched by the effect of the tension of the band and that said block is in a condition of imminent movement in the direction to the left, determine: a) The magnitude of the torque M applied to pulley A in the counterclockwise direction. b) The elongation of the spring for the exposed condition. The values of R₂=400mm, R=300mm, μ-0,35, -0,20, k=1000N/m, m₁=17kg, m₂=12kg Pulley A Idle pulley D Resort m1 M a=60° m₂ 3arrow_forward1. An excavator encounters a reaction force of 7600 lb from the ground, normal to line AC, as shown. The shaded structural members (Dipperstick (FH), Mainboom (ADK), bucket, and hydraulic cylinders) have a combined weight of 15000 lb and a horizontal mass center located midway between points C and G. A OLUNU G 3 ft 6 in. 40° E Mainboom 3 ft 4 in. 39 ft F O K Dipperstick H Bucket 7600 lb C Questions: (a) Dismember the shaded structural members (with labeled points A-H) from the tractor and sketch a free-body diagram showing external and exposed internal forces. (b) Compute the force in the hydraulic cylinder strut BD and the pin reactions at A in the given position.arrow_forward
- A uniform disk of mass m = 4 kg and radius r = 150 mm is supported by a belt ABCD that is bolted to the disk at B and C. If the belt suddenly breaks at a point located between A and B, draw the FBD and KD for the disk immediately after the break.arrow_forwardTwo uniform, solid cylinders of radius R and total mass M are connectedalong their common axis by a short, light rod and rest on a horizontaltabletop. A frictionless ring at the rod’s center is attached toa spring of force constant k; the spring’s other end is fixed. The cylindersare pulled to the left a distance x, stretching the spring, then releasedfrom rest. Due to friction between the tabletop and the cylinders, the cylindersroll without slipping as they oscillate. Show that the motion of thecenter of mass of the cylinders is simple harmonic, and find its period.arrow_forward5. A uniform solid cylinder with M 2R mass M and radius 2R rests on a horizontal tabletop. A string is attached by a yoke to a frictionless axle through the center of the cylinder so that the cylinder can rotate about the axle. The string runs over a disk-shaped pulley M with mass M and radius R that is mounted on a frictionless axle through its center. A block of mass M is suspended from the free end of the string. The string doesn't slip over the pulley surface, and the cylinder rolls without slipping on the tabletop. Find the magnitude of the acceleration of the block after the system is released from rest.arrow_forward
- Four masses m1, m2, m3 and m4 are 10 kg, 20 kg, 30 kg and 40 kg respectively. The corresponding radii of rotation are 0.1 m, 0.15 m, 0.3 m and 0.35 m respectively and the angles between successive masses are 40°, 60° and 120°. Find the position and magnitude of the balance mass required, if its radius of rotation is 0.5 m.arrow_forwardSolve part c,d,earrow_forwardP.5) A system consisting of two elastically constrained masses m₁ and m₂ is free to slide on a friction- less rod that rotates about the pivot point O. Mass m₁ is attached to O along the rod by a spring of stiffness k₁ with a free length of 1₁, and m₁ and m₂ are connected by a spring who sestiffness and free length are k₂ and 12, respectively. The angle describes the rod's orientation relative to the horizontal, and the positions of m₁ and m₂ along the rod are given by L₁ and L2, respectively. Find expressions for the system's total kinetic and potential energies. K y 5. 4₂ MM m₁ ←₂ MM 1112 j L SO Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical Engineering: Centroids & Center of Gravity (1 of 35) What is Center of Gravity?; Author: Michel van Biezen;https://www.youtube.com/watch?v=Tkyk-G1rDQg;License: Standard Youtube License