Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977237
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17.1, Problem 17.4P
Two disks of the same material are attached to a shaft as shown. Disk A has a radius r and a thickness b, while disk B has a radius nr and a thickness 2b. A couple M with a constant magnitude is applied when the system is at rest and is removed after the system has executed two revolutions. Determine the value of n that results in the largest final speed for a point on the rim of disk B.
e
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The parallelogram linkage shown moves in the vertical plane with the uniform 9.3-kg bar EF attached to the plate at E by a pin which
is welded both to the plate and to the bar. A torque (not shown) is applied to link AB through its lower pin to drive the links in a
clockwise direction. When e reaches 51°, the links have an angular acceleration and an angular velocity of 7.0 rad/s² and 2.3 rad/s,
respectively. For this instant calculate the magnitudes of the force F and torque M supported by the pin at E.
Welded
1435 mm
pin
F
995
995
mm
mm
B
D
Horizontal
Answers:
F =
i
N
M =
i
N•m
Two disks of the same material are attached to a shaft as shown. Disk A has a radius r and a thickness 2b, while disk B has a radius nr and a thickness 2b. A couple M with a constant magnitude is applied when the system is at rest and is removed after the system has executed two revolutions. Determine the value of n that results in the largest final speed for a point on the rim of disk B.
Problem (1) Gears A and B each have a mass of 4 kg and a radius
of gyration of 75 mm about their centers, while gear C has a mass
of 15 kg and a radius of gyration of 180 mm about its center. A
couple moment M = (0.20) N-m is applied to gear C. Determine
the number of revolutions gears A and B experience if gear C
increases its angular velocity from 25 rpm to 500 rpm.
B
80 mm
S0 mm
200 mm
Chapter 17 Solutions
Vector Mechanics For Engineers
Ch. 17.1 - A round object of mass m and radius r is released...Ch. 17.1 - Prob. 17.CQ2PCh. 17.1 - Prob. 17.CQ3PCh. 17.1 - Prob. 17.CQ4PCh. 17.1 - Slender bar A is rigidly connected to a massless...Ch. 17.1 - A 200-kg flywheel is at rest when a constant 300 N...Ch. 17.1 - The rotor of an electric motor has an angular...Ch. 17.1 - Two uniform disks of the same material are...Ch. 17.1 - Two disks of the same material are attached to a...Ch. 17.1 - Prob. 17.5P
Ch. 17.1 - Prob. 17.6PCh. 17.1 - Prob. 17.7PCh. 17.1 - Prob. 17.8PCh. 17.1 - Prob. 17.9PCh. 17.1 - Prob. 17.10PCh. 17.1 - Each of the gears A and B has a mass of 10 kg and...Ch. 17.1 - Solve Prob. 17.11, assuming that the 6 N m couple...Ch. 17.1 - The gear train shown consists of four gears of the...Ch. 17.1 - Prob. 17.14PCh. 17.1 - Prob. 17.15PCh. 17.1 - Prob. 17.16PCh. 17.1 - The 15-kg rear hatch of a vehicle opens as shown...Ch. 17.1 - A slender 9-lb rod can rotate in a vertical plane...Ch. 17.1 - Prob. 17.19PCh. 17.1 - Prob. 17.20PCh. 17.1 - A collar with a mass of 1 kg is rigidly attached...Ch. 17.1 - Prob. 17.22PCh. 17.1 - Prob. 17.23PCh. 17.1 - The 30-kg turbine disk has a centroidal radius of...Ch. 17.1 - A 100-kg solid cylindrical disk, 800 mm in...Ch. 17.1 - Prob. 17.26PCh. 17.1 - Prob. 17.27PCh. 17.1 - Prob. 17.28PCh. 17.1 - Prob. 17.29PCh. 17.1 - A half-cylinder with mass m and radius r is...Ch. 17.1 - Prob. 17.31PCh. 17.1 - Two uniform cylinders, each of weight W=14 lb and...Ch. 17.1 - Two uniform cylinders, each of weight W=14 lb and...Ch. 17.1 - A bar of mass m=5 kg is held as shown between four...Ch. 17.1 - The 1.5-kg uniform slender bar AB is connected to...Ch. 17.1 - Prob. 17.36PCh. 17.1 - A 5-m-long ladder has a mass of 15 kg and is...Ch. 17.1 - Prob. 17.38PCh. 17.1 - Prob. 17.39PCh. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - Each of the two rods shown is of length L=1 m and...Ch. 17.1 - The 4-kg rod AB is attached to a collar of...Ch. 17.1 - If in Prob. 17.43 the angular velocity of the...Ch. 17.1 - The uniform rods AB and BC are of mass 3 kg and 8...Ch. 17.1 - The uniform rods AB and BC weigh 2.4 kg and 4 kg,...Ch. 17.1 - The 80-mm-radius gear shown has a mass of 5 kg and...Ch. 17.1 - Prob. 17.48PCh. 17.1 - Three shafts and four gears are used to form a...Ch. 17.1 - Prob. 17.50PCh. 17.1 - The drive belt on a vintage sander transmits 12 hp...Ch. 17.2 - Slender bar A is rigidly connected to a massless...Ch. 17.2 - A 1-m-long uniform slender bar AB has an angular...Ch. 17.2 - The 350-kg flywheel of a small hoisting engine has...Ch. 17.2 - A sphere of radius r and mass m is placed on a...Ch. 17.2 - Prob. 17.F3PCh. 17.2 - Prob. 17.52PCh. 17.2 - Prob. 17.53PCh. 17.2 - Prob. 17.54PCh. 17.2 - Prob. 17.55PCh. 17.2 - Prob. 17.56PCh. 17.2 - A disk of constant thickness, initially at rest,...Ch. 17.2 - Prob. 17.58PCh. 17.2 - A cylinder of radius r and weight W with an...Ch. 17.2 - Each of the double pulleys shown has a centroidal...Ch. 17.2 - Prob. 17.61PCh. 17.2 - Prob. 17.62PCh. 17.2 - Prob. 17.63PCh. 17.2 - A tape moves over the two drums shown. Drum A...Ch. 17.2 - Prob. 17.65PCh. 17.2 - Prob. 17.66PCh. 17.2 - Prob. 17.67PCh. 17.2 - Consider a rigid body initially at rest and...Ch. 17.2 - Prob. 17.69PCh. 17.2 - Prob. 17.70PCh. 17.2 - Prob. 17.71PCh. 17.2 - Prob. 17.72PCh. 17.2 - Prob. 17.73PCh. 17.2 - Prob. 17.74PCh. 17.2 - Prob. 17.75PCh. 17.2 - Prob. 17.76PCh. 17.2 - A sphere of radius r and mass m is projected along...Ch. 17.2 - Prob. 17.78PCh. 17.2 - Prob. 17.79PCh. 17.2 - Prob. 17.80PCh. 17.2 - Two 10-lb disks and a small motor are mounted on a...Ch. 17.2 - Prob. 17.82PCh. 17.2 - A 1.6-kg tube AB can slide freely on rod DE, which...Ch. 17.2 - In the helicopter shown, a vertical tail propeller...Ch. 17.2 - Prob. 17.85PCh. 17.2 - The 4-kg uniform disk B is attached to the shaft...Ch. 17.2 - Prob. 17.87PCh. 17.2 - Prob. 17.88PCh. 17.2 - Prob. 17.89PCh. 17.2 - Prob. 17.90PCh. 17.2 - Prob. 17.91PCh. 17.2 - Prob. 17.92PCh. 17.2 - Prob. 17.93PCh. 17.2 - Prob. 17.94PCh. 17.2 - Prob. 17.95PCh. 17.3 - A uniform slender rod AB ofmass m is at rest on a...Ch. 17.3 - Prob. 17.F5PCh. 17.3 - Prob. 17.F6PCh. 17.3 - Prob. 17.96PCh. 17.3 - A bullet weighing 0.08 lb is fired with a...Ch. 17.3 - Prob. 17.98PCh. 17.3 - Prob. 17.99PCh. 17.3 - Prob. 17.100PCh. 17.3 - Prob. 17.101PCh. 17.3 - A 45-g bullet is fired with a velocity of 400 m/s...Ch. 17.3 - Prob. 17.103PCh. 17.3 - Prob. 17.104PCh. 17.3 - A uniform slender rod AB of mass m is at rest on a...Ch. 17.3 - Prob. 17.106PCh. 17.3 - Prob. 17.107PCh. 17.3 - Prob. 17.108PCh. 17.3 - Determine the height h at which the bullet of...Ch. 17.3 - A uniform slender bar of length L=200 mm and mass...Ch. 17.3 - A uniform slender rod of length L is dropped onto...Ch. 17.3 - A uniform slender rod AB has a mass m, a length L,...Ch. 17.3 - Prob. 17.113PCh. 17.3 - The trapeze/lanyard air drop (t/LAD) launch is a...Ch. 17.3 - The uniform rectangular block shown is moving...Ch. 17.3 - The 40-kg gymnast drops from her maximum height of...Ch. 17.3 - Prob. 17.117PCh. 17.3 - A uniformly loaded square crate is released from...Ch. 17.3 - A 1-oz bullet is fired with a horizontal velocity...Ch. 17.3 - For the beam of Prob. 17.119, determine the...Ch. 17.3 - The plank CDEhas a mass of 15 kg and rests on a...Ch. 17.3 - Prob. 17.122PCh. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - Prob. 17.125PCh. 17.3 - A 2-kg solid sphere of radius r=40 mm is dropped...Ch. 17.3 - Member ABC has a mass of 2.4 kg and is attached to...Ch. 17.3 - Member ABC has a mass of 2.4 kg and is attached to...Ch. 17.3 - Sphere A of mass mA=2 kg and radius r=40 mm rolls...Ch. 17.3 - A large 3-lb sphere with a radius r=3 in. is...Ch. 17.3 - Prob. 17.131PCh. 17.3 - Sphere A of mass m and radius r rolls without...Ch. 17.3 - Prob. 17.133PCh. 17.3 - Prob. 17.134PCh. 17 - A uniform disk, initially at rest and of constant...Ch. 17 - Prob. 17.136RPCh. 17 - Prob. 17.137RPCh. 17 - You are asked to analyze a catcher for a small...Ch. 17 - A uniform slender rod is placed at corner B and is...Ch. 17 - Prob. 17.140RPCh. 17 - Prob. 17.141RPCh. 17 - Prob. 17.142RPCh. 17 - Prob. 17.143RPCh. 17 - A square block of mass m is falling with a...Ch. 17 - Prob. 17.145RPCh. 17 - A 1.8-lb javelin DE impacts a 10-lb slender rod...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A shaft turning at a uniform speed carries two uniform discs A and B of masses 10kg and 8kg respectively. The centres of the mass of the discs are each 2.5mm from the axis of rotation. The radii to the centres of mass are at right angles. The shaft is carried in bearings C and D between A and B such that AC = 0.3m, AD = 0.9m and AB = 1.2m. It is required to make dynamic loading on the bearings equal and a minimum for any given shaft speed by adding a mass at a radius 25mm in a plane E. USING THE METHOD OF DRAWING m*r and m*r*l diagram Determine: The magnitude of the mass in plane E and its angular position relative to the mass in plane A The distance of the plane E from plane A The dynamic loading on each bearing when the mass in plane E has been attached and the shaft rotates at 200 rev/min. For the bearing loads in the opposite direction determine all the unknown values. For the bearing loads in the same direction, show the diagrams and equations only to use for a possible…arrow_forwardA shaft turning at a uniform speed carries two uniform discs A and B of masses 10kg and 8kg respectively. The centres of the mass of the discs are each 2.5mm from the axis of rotation. The radii to the centres of mass are at right angles. The shaft is carried in bearings C and D between A and B such that AC = 0.3m, AD = 0.9m and AB = 1.2m. It is required to make dynamic loading on the bearings equal and a minimum for any given shaft speed by adding a mass at a radius 25mm in a plane E. Determine: (a) The magnitude of the mass in plane E and its angular position relative to the mass in plane A (b) The distance of the plane E from plane A (c) The dynamic loading on each bearing when the mass in plane E has been attached and the shaft rotates at 200 rev/min. For the bearing loads in the opposite direction determine all the unknown values. For the bearing loads in the same direction, show the diagrams and equations only to use for a possible solution.arrow_forward3. The connecting rod of the steam engine shown schematically is assumed to be a slender uniform rod. 4 ft long weighing 322 Ib. the crank AO is 1ft long and rotates at a constant rate of 10 rad/s. the force on the 64.4 Ib cross-head at the given instant is 2142 Ib. neglecting friction. Determine the normal force on the crosshead and the horizontal and vertical components at crank pin force at A. А 45deg Вarrow_forward
- Q. The upper and lower arms of Porter governor are 0.25 m each and are pivoted 30 mm from the axis of rotation. The radius of rotation Is 130 mm. The mass of the ball and sleeve are 3 kg and 38 kg respectively. Find the effort and power of the governor.arrow_forwardA shaft has three eccentrics of mass 1kg each. The central plane of the eccentrics is 50 mm apart. The distances of the centers from the axis of rotation are 20 mm, 30 mm, and 20 mm and their angular positions are 120 degree apart. Find the amount of out-of-balance force and couple at 600 rpm. If the shaft is balances by adding two masses at a radius of 70 mm and at a distance of 100 mm from the central plane of the middle eccentrics, find the amount of masses and their angular positions. (Use graphical method for solution)arrow_forwardThe hand brake for a bicycle is shown. Portions DE and FG are free to rotate on bolt A which is screwed into the frame BC of the bicycle. The brake is actuated by a shielded cable where T1 is applied to point E and T2 is applied to point G. A spring having 40 N compressive force is placed between points E and G so that the brake stays open when it is not being used. Assume the change in the spring's force is negligible when the brake is actuated to produce the F = 100 N forces at points D and F. Determine the necessary cable forces T1 in N.arrow_forward
- A ring of mass m =1 kg and radius R = 1m is attached to a vertical shaft by means of a frictionless pin. Coordinates xyz are fixed to the ring as shown and the frictionless pin at A is aligned with the x-axis. The vertical shaft precesses about the Z-axis with constant angular velocity 2 = 1 rad/s. (a) At a particular moment when 0 = 30° and = 4 rad/s, find the value of Ö . This comes from a sum of the moments about the x-axis. Do not neglect gravity. (b) Find the torque or moment necessary that must be applied about the vertical shaft in order to keep it turning at a constant rate of N = 1 rad/s. Ring R XG A 1 Ixx = lyy =mR? G Iz = mR?arrow_forwardEach of the gears A and B has a mass of 10 kg and a radius of gyration of 190 mm, while gear Chas a mass of 2.5 kg and a radius of gyration of 80 mm. Consider that a couple M of constant magnitude 10 N-m is applied to gear C. 250 mm 250 mm 100 mm Determine the corresponding tangential force acting on gear A. The corresponding tangential force acting on gear A is 26.35 O N.arrow_forwardIn the mechanism illustrated in the figure opposite, each of the two bars AB and BC has a mass of 10 kg. A constant torque of M = 100 N*m is applied to bar AB around point A. Both bars are initially at rest at the position shown. Neglect the size of the small roller at point C. a) Prove that the bar BC is in translational motion at the instant shown. b) Determine the horizontal and vertical reaction forces at point B and the vertical reaction force at point C. Answers: b) Bx = [83.34 N →]; By = [17.8 N 1] et Rc = [80.3 N ↑] 0.9 m B M 1.2 m Carrow_forward
- The figure shows the cross section of a uniform 239-lb ventilator door hinged about its upper horizontal edge at O. The door is controlled by the spring-loaded cable which passes over the small pulley at A. The spring has a stiffness of 16.6 lb per foot of stretch and is undeformed when 8-0. If the door is released from rest in the horizontal position, determine the maximum angular velocity reached by the door and the corresponding angle 0. Answer: @max 4.2¹ rad/sec at 8-iarrow_forward1. The 20-kg flywheel has a radius of gyration kg = 0.5 m about the axis of its attached shaft (O-0). It is at rest when subjected to a torque that rises uniformly from 0 to 2 N-m over 3 revolutions, then holds at a constant 2 N-m for the remainder of the motion. What is the angular velocity of the flywheel after 10 revolutions? Give your answer in RPM.arrow_forwardNonearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Thermal Radiation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=FDmYCI_xYlA;License: Standard youtube license