Concept explainers
(a)
Interpretation:
The amount of NaCl, KCl, CaCl2. 2H2O, and NaC3H5O3 needed to prepare 100 mL lactated ringer’s solution needs to be determined.
Concept Introduction:
Ringer’s solution is an isotonic solution to blood and it is used in intervenors injection.
The solution which have same osmolarity, same solute concentration, as another solution is known as isotonic solution.
(a)
Explanation of Solution
Given information:
285 -315 mg Na+
14.1 -17.3 mg K+
4.9 − 6.0 mg Ca2+
368 − 408 mg Cl-
231 − 261 mg lactate, C3H5O3-
The range is given, first take the average of two values to calculate the approximate amount.
Or,
Or,
Also,
And,
Now, the amount of given compounds formed from calculated mass of ions can be calculated as follows:
Number of moles of
Thus, the number of moles of
Now, the mass of
The number of moles of KCl formed is 0.4 mmol.
The molar mass of KCl is 74.55 KCl thus, mass of KCl will be:
Similarly, the mass of
Here, the mass of sodium ion will be:
The mass of
The mass of NaCl formed from
The amount of
It can also be calculated from mass of KCl and NaCl as follows:
From KCl:
Similarly,
Now, the total mass of chloride ion will be:
(b)
Interpretation:
The range of the osmotic pressure of the solution at 370C should be predicted.
Concept Introduction:
Ringer’s solution is an isotonic solution to blood and it is used in intervenors injection.
The solution which have same osmolarity, same solute concentration, as another solution is known as isotonic solution.
(b)
Answer to Problem 132CP
Range of osmotic pressure = (4.38 − 6.55)
Explanation of Solution
The solution contains NaCl + KCl+ CaCl2 + NaC3H5O3
The dissociation reaction is shown below:
The total molarity will be sum of molarity of all the solutions.
For the initial range of the osmotic pressure, the total molarity should be calculated by taking the initial value of amount of ions from their given range.
The calculation of molarity is shown below:
The calculation of osmotic pressure is shown below:
Therefore, the minimum range of the osmotic pressure is 6.55 atm.
Now, for maximum range, take the final value of mass from the given ranges of masses of ions.
The calculation of molarity is shown below:
The calculation of osmotic pressure is shown below:
Range of osmotic pressure = (6.55-7.30 atm)
Want to see more full solutions like this?
Chapter 17 Solutions
Chemical Principles
- Show work.....don't give Ai generated solutionarrow_forwardShow work. Don't give Ai generated solutionarrow_forward10. Complete the following halogenation reactions for alkanes. Draw the structures of one of the many possible products for each reaction. Name the reactant and product. a) CH₂- CH-CH2-CH3 + Br₂ CH₂ UV UV b) + Cl2 c) CH3-CH₂ CHICHCHICH-CH CH₂-CH₂ + F2 UVarrow_forward
- Which of the following processes involves the largest photon energy? Group of answer choices Electron promotion from n=2 to n=5 Electron relaxing from n=4 to n=3 Ionization of an electron from n=2 Ionization of an electron from n=4arrow_forwardWhich of the following compounds does not match atomic ratio expectations in Mendeleev's 1872 periodic table? Group of answer choices NO2 Al2O3 SO3 CaOarrow_forwardNeed help with 14 and 15. 14. bromobenzene + (CHs),CuLi + THF / -78° followed by water quench is a. toluene else!! b. xylene c. cumene d. styrene e. something 15. When cumene + H,SO, / Na,Cr, 0,/water are mixed (refluxed) what is produced? a. 2-phenylpropanol phenol e. styrene b. benzoic acid c. no reaction!arrow_forward
- Which of the following orbitals intersect or overlap the x-axis in the standard cartesian coordinate system used? (Select ALL correct answers.) Group of answer choices px dxz dx2-y2 py dxy sarrow_forwardWhich of the following sets of elements is not a Dobereiner triad? (Choose the best answer.) Group of answer choices Li-Na-K Al-Ga-In Cr-Mo-W K-Rb-Csarrow_forwardDon't used Ai solution and don't used hand raitingarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardGive the structure(s) of the product(s) the reaction below, and be sure to indicate any relative stereochemistry (you can assume that each of the Diels-Alder reactions will proceed with endo selectivity). Draw out relevant enantiomer(s) if they are expected to form. If no reaction is expected to occur under the indicated conditions, then write "no reaction" or NR, and explain why you would expect nothing to occur. If more than one product is formed, please indicate which one will be the major product or if they will be formed in equal amounts. In all cases, equimolar amounts of both components/reagents are present unless indicated otherwise I'm struggling to see how this reaction will go! I am wondering if it will cycle on itself but I'm not sure how I drew out a decagon but I'm a bit lostarrow_forwardGive the structure(s) of the product(s) for the reactions below, and be sure to indicate any relative stereochemistry (you can assume that each of the Diels-Alder reactions will proceed with endo selectivity). Draw out relevant enantiomer(s) if they are expected to form. If no reaction is expected to occur under the indicated conditions, then write "no reaction" or NR, and explain why you would expect nothing to occur. If more than one product is formed, please indicate which one will be the major product or if they will be formed in equal amounts. In all cases, equimolar amounts of both components/reagents are present unless indicated otherwise .arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning