(a)
Interpretation:
The freezing point and boiling point of 0.050 m MgCl2 solution needs to be deduced
Concept Introduction:
The depression in freezing point (
Here,
Kf denotes the freezing point depression constant
i represents the Von’t Hoff factor
The elevation in boiling point (
Here,
Kb denotes the boiling point elevation constant.
(b)
Interpretation:
The freezing point and boiling point of 0.050 m FeCl3 solution needs to be deduced.
Concept Introduction:
The depression in freezing point (
Here,
Kf denotes the freezing point depression constant
i represents the Von’t Hoff factor
The elevation in boiling point (
Here,
Kb denotes the boiling point elevation constant.
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Chemical Principles
- The solubility of NaCl in water at 100 C is 39.1 g/100. g of water Calculate the boiling point of this solution. (Assume i = 1.85 for NaCl.)arrow_forwardSodium chloride (NaCl) is commonly used to melt ice on roads during the winter. Calcium chloride (CaCl2) is sometimes used for this purpose too. Let us compare the effectiveness of equal masses of these two compounds in lowering the freezing point of water, by calculating the freezing point depression of solutions containing 200. g of each salt in 1.00 kg of water. (An advantage of CaCl2 is that it acts more quickly because it is hygroscopic, that is. it absorbs moisture from the air to give a solution and begin the process. A disadvantage is that this compound is more costly.)arrow_forwardWater at 25 C has a density of 0.997 g/cm3. Calculate the molality and molarity of pure water at this temperature.arrow_forward
- The freezing point of a 0.21 m aqueous solution of H2SO4 is -0.796C. (a) What is i? (b) Is the solution made up primarily of (i) H2SO4 molecules only? (ii) H+ and HSO4- ions? (iii) 2H+ and 1SO42- ions?arrow_forwardA forensic chemist is given a white solid that is suspected of being pure cocaine (C17H21NO4, molar mass = 303.35 g/mol). She dissolves 1.22 0.01 g of the solid in 15.60 0.01 g benzene. The freezing point is lowered by 1.32 0.04C. a. What is the molar mass of the substance? Assuming that the percent uncertainty in the calculated molar mass is the same as the percent uncertainty in the temperature change, calculate the uncertainty in the molar mass. b. Could the chemist unequivocally state that the substance is cocaine? For example, is the uncertainty small enough to distinguish cocaine from codeine (C18H21NO3, molar mass = 299.36 g/mol)? c. Assuming that the absolute uncertainties in the measurements of temperature and mass remain unchanged, how could the chemist improve the precision of her results?arrow_forwardConcentrated hydrochloric acid contains 1.00 mol HCl dissolved in 3.31 mol H2O. What is the mole fraction of HCl in concentrated hydrochloric acid? What is the molal concentration of HCl?arrow_forward
- A 12.0-g sample of a nonelectrolyte is dissolved in 80.0 g of water. The solution freezes at -1.94 C. Calculate the molar mass of the substance.arrow_forwardArrange the following solutions in order by their decreasing freezing points: 0.1 m Na3PO4, 0.1 m C2H5OH, 0.01 m CO2, 0.151 m NaCI, and 0.21 m cacI2.arrow_forwardVodka is advertised to be 80 proof. That means that the ethanol (C2H5OH) concentration is 40% (two significant figures) by volume. Assuming the density of the solution to be 1.0 g/mL, what is the freezing point of vodka? The density of ethanol is 0.789 g/mL.arrow_forward
- Arrange 0.10 m aqueous solutions of the following solutes in order of decreasing freezing point and boiling point. (a) Al(ClO3)3(b) CH3OH (c) (NH4)2Cr2O7 (d) MgSO4arrow_forwardCalculate the molality of a solution made by dissolving 115.0 g ethylene glycol, HOCH2CH2OH, in 500. mL water. The density of water at this temperature is 0.978 g/mL. Calculate the molarity of the solution.arrow_forwardCalculate the freezing point and normal boiling points of each of the following aqueous solutions. (a) 2.63 m acetic acid (b) 33.0 % by mass lactose, C12H22O11 (c) 32.15 mL of ethylene glycol, C2H6O2(d=1.113g/mL) in 624 mL of water (d=1.00g/mL)arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning