Concept explainers
Interpretation: A solution is made by mixing
Concept introduction: Vapor pressure or an equilibrium vapor pressure of a substance is a pressure exerted by the vapors in thermodynamic equilibrium with its condensed phase (like liquid or solid) at the given temperature in a closed system. It can be calculated as:
Answer to Problem 46E
The mole fraction of
Explanation of Solution
Mole fraction of each component in vapor can be calculated by taking the ratio of partial pressure of each component in vapor above the solution to the total vapor pressure of the solution.
For this, first calculate the total vapor pressure of the solution by using modified Raoult;s law;
Here,
We have a solution prepared from
Mole fraction
Mole fraction
Vapor pressures of the pure components are given as:
Now, substitute the values in equation (1) determine the total vapor pressure of the solution as
Now, the mole fraction of each component in vapor can be calculated by taking the ratio of partial pressure of the each component in vapor above the solution ( P ) to the total pressure of the solution
Hence, the mole fraction of
The mole fraction of
Want to see more full solutions like this?
Chapter 17 Solutions
Chemical Principles
- The vapor pressures of several solutions of water-propanol (CH3CH2CH2OH) were determined at various compositions, with the following data collected at 45C: H2O Vapor pressure(torr) 0 74.0 0.15 77.3 0.37 80.2 0.54 81.6 0.69 80.6 0.83 78.2 1.00 71.9 a. Are solutions of water and propanol ideal? Explain. b. Predict the sign of Hsoln for water-propanol solutions. c. Are the interactive forces between propanol and water molecules weaker than, stronger than, or equal to the interactive forces between the pure substances? Explain. d. Which of the solutions in the data would have the lowest normal boiling point?arrow_forwardCalcium chloride, CaCl2, has been used to melt ice from roadways. Given that the saturated solution is 32% CaCl2 by mass, estimate the freezing point.arrow_forwardCarbon tetrachloride (CCl4) and benzene (C6H6) form ideal solutions. Consider an equimolar solution of CCl4 and C6H6 at 25C. The vapor above the solution is collected and condensed. Using the following data, determine the composition in mole fraction of the condensed vapor. Substance Gfo C6H6(l) 124.50 kJ/mol C6H6(g) 129.66 kJ/mol CCI4(l) 65.21 kJ/mol CCI4,(g) 60.59 kJ/molarrow_forward
- The organic salt [(C4H9)4N][ClO4] consists of the ions (C4H9)4N+ and ClO4. The salt dissolves in chloroform. What mass (in grams) of the salt must have been dissolved if the boiling point of a solution of the salt in 25.0 g chloroform is 63.20 C? The normal boiling point of chloroform is 61.70 C and Kb = 3.63 C kg mol1. Assume that the salt dissociates completely into its ions in solution.arrow_forwardThe dispersed phase of a certain colloidal dispersion consists of spheres of diameter 1.0 102 nm. (a) What are the volume (V=43r2) and surface area (A = r2) of each sphere? (b) How many spheres are required to give a total volume of 1.0 cm3? What is the total surface area of these spheres in square meters?arrow_forwardA forensic chemist is given a white solid that is suspected of being pure cocaine (C17H21NO4, molar mass = 303.35 g/mol). She dissolves 1.22 0.01 g of the solid in 15.60 0.01 g benzene. The freezing point is lowered by 1.32 0.04C. a. What is the molar mass of the substance? Assuming that the percent uncertainty in the calculated molar mass is the same as the percent uncertainty in the temperature change, calculate the uncertainty in the molar mass. b. Could the chemist unequivocally state that the substance is cocaine? For example, is the uncertainty small enough to distinguish cocaine from codeine (C18H21NO3, molar mass = 299.36 g/mol)? c. Assuming that the absolute uncertainties in the measurements of temperature and mass remain unchanged, how could the chemist improve the precision of her results?arrow_forward
- The density of a 3.75 M aqueous sulfuric acid solution in a car battery is 1.225 g/mL. Express the concentration of the solution in molality, mole fraction H2SO2, and mass percentage of H2SO4.arrow_forwardWhat is the freezing point and normal boiling point of a solution made by adding 39 mL of acetone, C3H6O, to 225 mL of water? The densities of acetone and water are 0.790 g/cm3 and 1.00 g/cm3, respectively.arrow_forwardFor each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Ammonia gas in water with P = 1 atm and T = 50C Ammonia gas in water with P = 1 atm and T = 90C b. Carbon dioxide gas in water with P = 2 atm and T = 50C Carbon dioxide gas in water with P = 1 atm and T = 50C c. Table salt in water with P = 1 atm and T = 60C Table salt in water with P = 1 atm and T = 50C d. Table sugar in water with P = 2 atm and T = 40C Table sugar in water with P = 1 atm and T = 70Carrow_forward
- What would be the freezing point of a solution formed by adding 1.0 mole of glucose (a molecular compound) to the following amounts of water? a. 250 g (0.25 kg) b. 500 g (0.500 kg) c. 1000 g (1.000 kg) d. 2000 g (2.000 kg)arrow_forwardPredict the relative solubility of each compound in the two solvents, based on the intermolecular attractions. (a) Is potassium iodide more soluble in water or in methylene chloride (CH2Cl2)? (b) Is toluene (C6H5CH3) more soluble in benzene (C6H6) or in water? (c) Is ethylene glycol (C2H4(OH)2) more soluble in hexane (C6H14) or in ethanol (C2H5OH)?arrow_forwardA solution is made by dissolving 0.455 g of PbBr2 in 100 g of H2O at 50C. Based on the data in Table 8-1, should this solution be characterized as a. saturated or unsaturated b. dilute or concentratedarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning