Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
2nd Edition
ISBN: 9781305079243
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 17, Problem 115AE

The saturated calomel electrode. abbreviated SCE. is often used as a reference electrode in making electrochemica1 measurements. The SCE is composed of mercury in contact with a saturated solution of calomel (Hg2Cl2). The electrolyte solution is saturated KCI. Chapter 17, Problem 115AE, The saturated calomel electrode. abbreviated SCE. is often used as a reference electrode in making  is +0.242 V relative to the standard hydrogen electrode. Calculate the potential for each of the following galvanic cells containing a saturated calomel electrode and the given half-cell components at standard conditions. In each case. indicate whether the SCE is the cathode or the anode. Standard reduction potentials are found in Table 17.1.

a. Cu 2+ + 2 e Cu

b. Fe 3 + + e - Fe 2 +

c. AgCl + e - Ag + Cl -

d. Al 3 + + 3 e Al

e. Ni 2 + + 2 e Ni

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The use of saturated Calomel electrode (SCE) as a reference electrode in making of electrochemical measurements and its formation by combination of Mercury and saturated solution of calomel (Hg2Cl2) , which is present in contact with an electrolytic solution of saturated KCl is given. The potential for the given galvanic cells containing calomel electrode and the given half-cell and the cathodic or anodic nature of SCE has to be calculated.

Concept introduction:

An electrode that is highly stable and whose electrode potential value is known is called reference electrode. The reference electrode is used for the construction of an electrochemical cell.

To determine: The potential for the given galvanic cell containing calomel electrode and the given half-cell components and the cathodic or anodic nature of SCE.

As the reduction potential of Copper is greater than the standard calomel electrode, therefore the standard calomel electrode acts as the anode, while the Copper electrode acts as the cathode.

The potential for the given galvanic cell containing calomel electrode and the given half-cell components is 0.098V_ .

Explanation of Solution

Given,

The value of ESCE is +0.242V .

The value of standard reduction potential for the given half-reaction is,

Cu2++2eCuE°=0.34V

As the reduction potential of Copper is greater than the standard calomel electrode, therefore the standard calomel electrode acts as the anode, while the Copper electrode acts as the cathode.

The reaction taking place at the cathode is,

Cu2++2eCuE°red=0.34V

The reaction taking place at the anode is,

2Hg+2ClHg2Cl2+2eE°ox=0.242V

The value of E°cell is given as,

E°cell=E°ox+E°red

Where,

  • E°ox is the oxidation potential of anode.
  • E°red is the reduction potential of the cathode.

Substitute the values of E°ox and E°red in the above equation,

E°cell=E°ox+E°red=(0.242V)+0.34V=0.098V_

The potential for the given galvanic cells containing calomel electrode and the given half-cell is 0.098V_ .

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The use of saturated Calomel electrode (SCE) as a reference electrode in making of electrochemical measurements and its formation by combination of Mercury and saturated solution of calomel (Hg2Cl2) , which is present in contact with an electrolytic solution of saturated KCl is given. The potential for the given galvanic cells containing calomel electrode and the given half-cell and the cathodic or anodic nature of SCE has to be calculated.

Concept introduction:

An electrode that is highly stable and whose electrode potential value is known is called reference electrode. The reference electrode is used for the construction of an electrochemical cell.

To determine: The potential for the given galvanic cells containing calomel electrode and the given half-cell components and the cathodic or anodic nature of SCE.

As the reduction potential of Iron is greater than the standard calomel electrode, therefore the standard calomel electrode acts as the anode, while the Iron electrode acts as the cathode.

The potential for the given galvanic cell containing calomel electrode and the given half-cell components is 0.528V_ .

Explanation of Solution

Explanation

Given

The value of ESCE is +0.242V .

The value of standard reduction potential for the given half-reaction is,

Fe3++3eFeE°=0.77V

As the reduction potential of Iron is greater than the standard calomel electrode, therefore the standard calomel electrode acts as the anode, while the Iron electrode acts as the cathode.

The reaction taking place at the cathode is,

Fe3++3eFeE°red=0.77V

The reaction taking place at the anode is,

2Hg+2ClHg2Cl2+2eE°ox=0.242V

The value of E°cell is given as,

E°cell=E°ox+E°red

Where,

  • E°ox is the oxidation potential of anode.
  • E°red is the reduction potential of the cathode.

Substitute the values of E°ox and E°red in the above equation,

E°cell=E°ox+E°red=(0.242V)+0.77V=0.528V_

The potential for the given galvanic cells containing calomel electrode and the given half-cell components is 0.528V_ .

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The use of saturated Calomel electrode (SCE) as a reference electrode in making of electrochemical measurements and its formation by combination of Mercury and saturated solution of calomel (Hg2Cl2) , which is present in contact with an electrolytic solution of saturated KCl is given. The potential for the given galvanic cells containing calomel electrode and the given half-cell and the cathodic or anodic nature of SCE has to be calculated.

Concept introduction:

An electrode that is highly stable and whose electrode potential value is known is called reference electrode. The reference electrode is used for the construction of an electrochemical cell.

To determine: The potential for the given galvanic cell containing calomel electrode and the given half-cell and the cathodic or anodic nature of SCE.

As the reduction potential of AgCl is lower than the standard calomel electrode, therefore the standard calomel electrode acts as the cathode, while the AgCl electrode acts as the anode.

The potential for the given galvanic cell containing calomel electrode and the given half-cell components is 0.022V_ .

Explanation of Solution

Explanation

Given

The value of ESCE is +0.242V .

The value of standard reduction potential for the given half-reaction is,

AgCl+eAg+ClE°=0.22V

As the reduction potential of AgCl is lower than the standard calomel electrode, therefore the standard calomel electrode acts as the cathode, while the AgCl electrode acts as the anode.

The reaction taking place at the cathode is,

Hg2Cl2+2e2Hg+2ClE°red=0.242V

The reaction taking place at the anode is,

Ag+ClAgCl+eE°ox=0.22V

The value of E°cell is given as,

E°cell=E°ox+E°red

Where,

  • E°ox is the oxidation potential of the anode.
  • E°red is the reduction potential of the cathode.

Substitute the values of E°ox and E°red in the above equation,

E°cell=E°ox+E°red=(0.22V)+0.242V=0.022V_

The potential for the given galvanic cells containing calomel electrode and the given half-cell is 0.022V_ .

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The use of saturated Calomel electrode (SCE) as a reference electrode in making of electrochemical measurements and its formation by combination of Mercury and saturated solution of calomel (Hg2Cl2) , which is present in contact with an electrolytic solution of saturated KCl is given. The potential for the given galvanic cells containing calomel electrode and the given half-cell and the cathodic or anodic nature of SCE has to be calculated.

Concept introduction:

An electrode that is highly stable and whose electrode potential value is known is called reference electrode. The reference electrode is used for the construction of an electrochemical cell.

To determine: The potential for the given galvanic cell containing calomel electrode and the given half-cell components and the cathodic or anodic nature of SCE.

As the reduction potential of Aluminum is lower than the standard calomel electrode, therefore the standard calomel electrode acts as the cathode, while the Aluminum electrode acts as the anode.

The potential for the given galvanic cell containing calomel electrode and the given half-cell components is 1.902V_ .

Explanation of Solution

Given,

The value of ESCE is +0.242V .

The value of standard reduction potential for the given half-reaction is,

Al3++3eAlE°=1.66V

As the reduction potential of Aluminum is lower than the standard calomel electrode, therefore the standard calomel electrode acts as the cathode, while the Aluminum electrode acts as the anode.

The reaction taking place at the cathode is,

Hg2Cl2+2e2Hg+2ClE°red=0.242V

The reaction taking place at the anode is,

AlAl3++3eE°ox=1.66V

The value of E°cell is given as,

E°cell=E°ox+E°red

Where,

  • E°ox is the oxidation potential of the anode.
  • E°red is the reduction potential of the cathode.

Substitute the values of E°ox and E°red in the above equation,

E°cell=E°ox+E°red=(1.66V)+0.242V=1.902V_

The potential for the given galvanic cell containing calomel electrode and the given half-cell components is 1.902V_ .

(e)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The use of saturated Calomel electrode (SCE) as a reference electrode in making of electrochemical measurements and its formation by combination of Mercury and saturated solution of calomel (Hg2Cl2) , which is present in contact with an electrolytic solution of saturated KCl is given. The potential for the given galvanic cells containing calomel electrode and the given half-cell and the cathodic or anodic nature of SCE has to be calculated.

Concept introduction:

An electrode that is highly stable and whose electrode potential value is known is called reference electrode. The reference electrode is used for the construction of an electrochemical cell.

To determine: The potential for the given galvanic cell containing calomel electrode and the given half-cell components and the cathodic or anodic nature of SCE.

As the reduction potential of Nickel is lower than the standard calomel electrode, therefore the standard calomel electrode acts as the cathode, while the Nickel electrode acts as the anode.

The potential for the given galvanic cell containing calomel electrode and the given half-cell components is 0.472V_ .

Explanation of Solution

Given,

The value of ESCE is +0.242V .

The value of standard reduction potential for the given half-reaction is,

Ni2++2eNiE°=0.23V

As the reduction potential of Nickel is lower than the standard calomel electrode, therefore the standard calomel electrode acts as the cathode, while the Nickel electrode acts as the anode.

The reaction taking place at the cathode is,

Hg2Cl2+2e2Hg+2ClE°red=0.242V

The reaction taking place at the anode is,

NiNi2++2eE°ox=0.23V

The value of E°cell is given as,

E°cell=E°ox+E°red

Where,

  • E°ox is the oxidation potential of the anode.
  • E°red is the reduction potential of the cathode.

Substitute the values of E°ox and E°red in the above equation,

E°cell=E°ox+E°red=0.23V+0.242V=0.472V_

The potential for the given galvanic cells containing calomel electrode and the given half-cell is 0.472V_ .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Draw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl C O Substitution will not occur at a significant rate. Explanation Check + O-CH3 Х Click and drag to start drawing a structure.
✓ aw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. C Cl HO–CH O Substitution will not occur at a significant rate. Explanation Check -3 ☐ : + D Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Ce
Please correct answer and don't used hand raiting

Chapter 17 Solutions

Chemistry: An Atoms First Approach

Ch. 17 - Prob. 2ALQCh. 17 - Prob. 3ALQCh. 17 - Prob. 4ALQCh. 17 - Sketch a cell that forms iron metal from iron(II)...Ch. 17 - Which of the following is the best reducing agent:...Ch. 17 - Prob. 7ALQCh. 17 - Prob. 8ALQCh. 17 - Explain why cell potentials are not multiplied by...Ch. 17 - What is the difference between and ? When is equal...Ch. 17 - Prob. 11ALQCh. 17 - Look up the reduction potential for Fe3+ to Fe2+....Ch. 17 - Prob. 13ALQCh. 17 - Is the following statement true or false?...Ch. 17 - Prob. 15RORRCh. 17 - Assign oxidation numbers to all the atoms in each...Ch. 17 - Specify which of the following equations represent...Ch. 17 - The Ostwald process for the commercial production...Ch. 17 - Prob. 19QCh. 17 - Prob. 20QCh. 17 - When magnesium metal is added to a beaker of...Ch. 17 - How can one construct a galvanic cell from two...Ch. 17 - The free energy change for a reaction, G, is an...Ch. 17 - What is wrong with the following statement: The...Ch. 17 - When jump-starting a car with a dead battery, the...Ch. 17 - Prob. 26QCh. 17 - Prob. 27QCh. 17 - Consider the following electrochemical cell: a. If...Ch. 17 - Balance the following oxidationreduction reactions...Ch. 17 - Prob. 30ECh. 17 - Prob. 31ECh. 17 - Prob. 32ECh. 17 - Chlorine gas was first prepared in 1774 by C. W....Ch. 17 - Gold metal will not dissolve in either...Ch. 17 - Prob. 35ECh. 17 - Consider the following galvanic cell: a. Label the...Ch. 17 - Prob. 37ECh. 17 - Sketch the galvanic cells based on the following...Ch. 17 - Prob. 39ECh. 17 - Prob. 40ECh. 17 - Prob. 41ECh. 17 - Prob. 42ECh. 17 - Prob. 43ECh. 17 - Give the standard line notation for each cell in...Ch. 17 - Prob. 45ECh. 17 - Prob. 46ECh. 17 - Prob. 47ECh. 17 - Prob. 48ECh. 17 - Prob. 49ECh. 17 - The amount of manganese in steel is determined by...Ch. 17 - Prob. 51ECh. 17 - Prob. 52ECh. 17 - Estimate for the half-reaction 2H2O+2eH2+2OH given...Ch. 17 - Prob. 54ECh. 17 - Glucose is the major fuel for most living cells....Ch. 17 - Direct methanol fuel cells (DMFCs) have shown some...Ch. 17 - Prob. 57ECh. 17 - Using data from Table 17-1, place the following in...Ch. 17 - Answer the following questions using data from...Ch. 17 - Prob. 60ECh. 17 - Consider only the species (at standard conditions)...Ch. 17 - Prob. 62ECh. 17 - Prob. 63ECh. 17 - Prob. 64ECh. 17 - Prob. 65ECh. 17 - Prob. 66ECh. 17 - A galvanic cell is based on the following...Ch. 17 - Prob. 68ECh. 17 - Consider the concentration cell shown below....Ch. 17 - Prob. 70ECh. 17 - The overall reaction in the lead storage battery...Ch. 17 - Prob. 72ECh. 17 - Consider the cell described below:...Ch. 17 - Consider the cell described below:...Ch. 17 - Prob. 75ECh. 17 - Prob. 76ECh. 17 - Prob. 77ECh. 17 - Prob. 78ECh. 17 - Prob. 79ECh. 17 - An electrochemical cell consists of a nickel metal...Ch. 17 - An electrochemical cell consists of a standard...Ch. 17 - Prob. 82ECh. 17 - Consider a concentration cell that has both...Ch. 17 - Prob. 84ECh. 17 - Prob. 85ECh. 17 - Prob. 86ECh. 17 - Consider the following galvanic cell at 25C:...Ch. 17 - Prob. 88ECh. 17 - Prob. 89ECh. 17 - Prob. 90ECh. 17 - Prob. 91ECh. 17 - The solubility product for CuI(s) is 1.1 102...Ch. 17 - How long will it take to plate out each of the...Ch. 17 - The electrolysis of BiO+ produces pure bismuth....Ch. 17 - What mass of each of the following substances can...Ch. 17 - Prob. 96ECh. 17 - An unknown metal M is electrolyzed. It took 74.1 s...Ch. 17 - Electrolysis of an alkaline earth metal chloride...Ch. 17 - What volume of F2 gas, at 25C and 1.00 atm, is...Ch. 17 - What volumes of H2(g) and O2(g) at STP are...Ch. 17 - Prob. 101ECh. 17 - A factory wants to produce 1.00 103 kg barium...Ch. 17 - It took 2.30 min using a current of 2.00 A to...Ch. 17 - A solution containing Pt4+ is electrolyzed with a...Ch. 17 - A solution at 25C contains 1.0 M Cd2+, 1.0 M Ag+,...Ch. 17 - Consider the following half-reactions: A...Ch. 17 - In the electrolysis of an aqueous solution of...Ch. 17 - Copper can be plated onto a spoon by placing the...Ch. 17 - Prob. 109ECh. 17 - Prob. 110ECh. 17 - Prob. 111ECh. 17 - What reaction will take place at the Cathode and...Ch. 17 - Gold is produced electrochemically from an aqueous...Ch. 17 - Prob. 114AECh. 17 - The saturated calomel electrode. abbreviated SCE....Ch. 17 - Consider the following half-reactions: Explain why...Ch. 17 - Consider the standard galvanic cell based on the...Ch. 17 - Prob. 118AECh. 17 - The black silver sulfide discoloration of...Ch. 17 - Prob. 120AECh. 17 - When aluminum foil is placed in hydrochloric acid,...Ch. 17 - Prob. 122AECh. 17 - Prob. 123AECh. 17 - The overall reaction and equilibrium constant...Ch. 17 - What is the maximum work that can be obtained from...Ch. 17 - The overall reaction and standard cell potential...Ch. 17 - Prob. 127AECh. 17 - Prob. 128AECh. 17 - Prob. 129AECh. 17 - Prob. 130AECh. 17 - Prob. 131AECh. 17 - Prob. 132AECh. 17 - Prob. 133AECh. 17 - Prob. 134CWPCh. 17 - Consider a galvanic cell based on the following...Ch. 17 - Consider a galvanic cell based on the following...Ch. 17 - Consider a galvanic cell based on the following...Ch. 17 - An electrochemical cell consists of a silver metal...Ch. 17 - An aqueous solution of PdCl2 is electrolyzed for...Ch. 17 - Prob. 140CPCh. 17 - Prob. 141CPCh. 17 - The overall reaction in the lead storage battery...Ch. 17 - Consider the following galvanic cell: Calculate...Ch. 17 - Prob. 144CPCh. 17 - A galvanic cell is based on the following...Ch. 17 - Prob. 146CPCh. 17 - The measurement of pH using a glass electrode...Ch. 17 - Prob. 148CPCh. 17 - A galvanic cell is based on the following...Ch. 17 - Prob. 150CPCh. 17 - Prob. 151CPCh. 17 - Prob. 152CPCh. 17 - Consider the following galvanic cell: A 15 0-mole...Ch. 17 - When copper reacts with nitric acid, a mixture of...Ch. 17 - The following standard reduction potentials have...Ch. 17 - An electrochemical cell is set up using the...Ch. 17 - Three electrochemical cells were connected in...Ch. 17 - A silver concentration cell is set up at 25C as...Ch. 17 - A galvanic cell is based on the following...Ch. 17 - Prob. 160MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY