The requirement of electrical energy for the production of Aluminum from Aluminum oxide is given. The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans is to be stated. Concept introduction: For melting of any substance some specific amount of heat is required. Therefore, the amount of heat that is required for melting one mole of substance and that too at its melting point is called the heat of fusion. To determine: The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans. The amount of electrical energy required to produce Aluminum from Aluminum oxide is 54 × 10 6 J . The amount of energy required to melt Aluminum metal is 395.9 × 10 3 J . The energy for melting Aluminum is lower than the energy required for producing Aluminum from Aluminum oxide. The requirement of lower energy for melting Aluminum than required to produce Aluminum from Aluminum oxide makes it an economically feasible process.
The requirement of electrical energy for the production of Aluminum from Aluminum oxide is given. The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans is to be stated. Concept introduction: For melting of any substance some specific amount of heat is required. Therefore, the amount of heat that is required for melting one mole of substance and that too at its melting point is called the heat of fusion. To determine: The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans. The amount of electrical energy required to produce Aluminum from Aluminum oxide is 54 × 10 6 J . The amount of energy required to melt Aluminum metal is 395.9 × 10 3 J . The energy for melting Aluminum is lower than the energy required for producing Aluminum from Aluminum oxide. The requirement of lower energy for melting Aluminum than required to produce Aluminum from Aluminum oxide makes it an economically feasible process.
Solution Summary: The author compares the amount of electrical energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum, and explains the economic feasibility of recycling Aluminum cans.
The requirement of electrical energy for the production of Aluminum from Aluminum oxide is given. The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans is to be stated.
Concept introduction:
For melting of any substance some specific amount of heat is required. Therefore, the amount of heat that is required for melting one mole of substance and that too at its melting point is called the heat of fusion.
To determine: The comparison between the energy required for producing Aluminum from Aluminum oxide and the energy for melting Aluminum and the reason behind the economical feasibility of recycling Aluminum cans.
The amount of electrical energy required to produce Aluminum from Aluminum oxide is
54×106J.
The amount of energy required to melt Aluminum metal is
395.9×103J.
The energy for melting Aluminum is lower than the energy required for producing Aluminum from Aluminum oxide.
The requirement of lower energy for melting Aluminum than required to produce Aluminum from Aluminum oxide makes it an economically feasible process.
Predict the major products of the following organic reaction:
Some important notes:
Δ
CN
?
• Draw the major product, or products, of the reaction in the drawing area below.
• If there aren't any products, because no reaction will take place, check the box below the drawing area instead.
Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are
enantiomers.
ONO reaction.
Click and drag to start drawing a structure.
The following product was made from diethyl ketone and what other reagent(s)?
£
HO
10
2-pentyne
1-butyne and NaNH2
☐ 1-propanol
☐ pyridine
butanal
☐ pentanoate
Which pair of reagents will form the given product?
OH
X
+
Y
a.
CH3
b.
CH2CH3
༧་་
C. CH3-
CH2CH3
d.o6.(རི॰
e.
CH3
OCH2CH3
-MgBr
f. CH3-MgBr
g. CH3CH2-MgBr
-C-CH3
CH2CH3