(a)
Interpretation:
The five
Concept introduction:
The reaction in which both oxidation and reduction reaction occur simultaneously is called a redox reaction. According to the law of conservation of mass, the mass of all the species in a reaction must be balanced. Therefore balancing is necessary to conserve the mass and even the charge must be balanced to maintain the overall charge of the reaction.
(a)
Answer to Problem 30E
The balanced equations are as follows,
Explanation of Solution
The balanced equation is defined as follows,
The reduction half cell reaction is,
The change in the oxidation number of nitrogen is from
The oxidation half reaction is,
The change in oxidation number of copper is from zero to
As the atoms other than hydrogen and oxygen are already balanced, so directly balance the oxygen atom in the reduction half reaction by adding water to right hand side,
Balance the hydrogen atoms in the reduction half reaction by adding
Balance the charge by adding appropriate number of electrons to the left hand side,
As the atoms other than hydrogen and oxygen are already balanced in the oxidation half reaction and there are also no hydrogen or oxygen atom in the reaction. Therefore directly balance the charge by adding electrons to the right hand side.
Multiply equation (1) by
Cancel similar terms on both the sides. The final equation is,
(b)
Interpretation:
The five oxidation-reduction reactions are given. The balancing of all the reactions in acidic media using half-reaction method is to be done.
Concept introduction:
The reaction in which both oxidation and reduction reaction occur simultaneously is called a redox reaction. According to the law of conservation of mass, the mass of all the species in a reaction must be balanced. Therefore balancing is necessary to conserve the mass and even the charge must be balanced to maintain the overall charge of the reaction.
(b)
Answer to Problem 30E
The balanced equations are as follows,
Explanation of Solution
The balanced equation is defined as follows,
The reduction half cell reaction is,
The change in the oxidation number of chromium is from
The oxidation half reaction is,
The change in oxidation number of chlorine is from
Balance all the atoms except hydrogen and oxygen in the reduction half reaction,
Balance the oxygen in the reduction half reaction by adding water to right hand side,
Balance the hydrogen atoms in the reduction half reaction by adding
Balance the charge by adding appropriate number of electrons to the left hand side,
Balance all the atoms except hydrogen and oxygen in the oxidation half,
As no hydrogen or oxygen atom is present in the above reaction. So, directly balance the charge by adding electrons at the appropriate side,
Multiply equation (4) by
Cancel similar terms on both the sides to get the final equation as,
(c)
Interpretation:
The five oxidation-reduction reactions are given. The balancing of all the reactions in acidic media using half-reaction method is to be done.
Concept introduction:
The reaction in which both oxidation and reduction reaction occur simultaneously is called a redox reaction. According to the law of conservation of mass, the mass of all the species in a reaction must be balanced. Therefore balancing is necessary to conserve the mass and even the charge must be balanced to maintain the overall charge of the reaction.
(c)
Answer to Problem 30E
The balanced equations are as follows,
Explanation of Solution
The balanced equation is defined as follows,
The reduction half cell reaction is,
The change in the oxidation number of lead is from
The oxidation half reaction is,
The change in oxidation number of bromine is from zero to
All the elements except hydrogen and oxygen are already balanced so directly balance the oxygen atoms in the reduction half reaction by adding water molecules to the right hand side,
Balance the hydrogen atoms by adding
Balance the charge by adding appropriate number of electrons to the right hand side,
All the atoms except hydrogen and oxygen in oxidation half reaction are already balanced and oxygen is also balanced. So, directly balance hydrogen atoms by adding
Balance the charge by adding electrons at the appropriate side,
Add the oxidation and reduction half reaction to get the final equation,
Cancel similar terms on both the sides. The final equation is,
The final equation is,
(d)
Interpretation:
The five oxidation-reduction reactions are given. The balancing of all the reactions in acidic media using half-reaction method is to be done.
Concept introduction:
The reaction in which both oxidation and reduction reaction occur simultaneously is called a redox reaction. According to the law of conservation of mass, the mass of all the species in a reaction must be balanced. Therefore balancing is necessary to conserve the mass and even the charge must be balanced to maintain the overall charge of the reaction.
(d)
Answer to Problem 30E
The balanced equations are as follows,
Explanation of Solution
The balanced equation is defined as follows,
The reduction half cell reaction is,
The change in the oxidation number of bismuth is from
The oxidation half reaction is,
The change in oxidation number of manganese is from
Balance all the atoms except hydrogen and oxygen in the reduction half cell,
Balance the oxygen in the reduction half reaction by adding water to right hand side,
Balance the hydrogen atoms in the reduction half reaction by adding
Balance the charge by adding appropriate number of electrons to the left hand side,
As all the atoms except hydrogen are already balanced in the oxidation half reaction. So, directly balance the oxygen atoms by adding water molecule to the left hand side,
Balance the hydrogen atoms by adding
Balance the charge by adding electrons at the appropriate side,
Multiply equation (7) by
Cancel similar terms on both the sides. The final equation is,
(e)
Interpretation:
The five oxidation-reduction reactions are given. The balancing of all the reactions in acidic media using half-reaction method is to be done.
Concept introduction:
The reaction in which both oxidation and reduction reaction occur simultaneously is called a redox reaction. According to the law of conservation of mass, the mass of all the species in a reaction must be balanced. Therefore balancing is necessary to conserve the mass and even the charge must be balanced to maintain the overall charge of the reaction.
(e)
Explanation of Solution
The balanced equation is defined as follows,
The reduction half cell reaction is,
The change in the oxidation number of arsenic is from
The oxidation half reaction is,
The change in oxidation number of zinc is from zero to
All the atoms except hydrogen and oxygen in the reduction half cell are already balanced. So, directly balance the oxygen by adding water to right hand side,
Balance the hydrogen atoms in the reduction half reaction by adding
Balance the charge by adding appropriate number of electrons to the left hand side,
As all the atoms except hydrogen are already balanced in the oxidation half reaction and there are no hydrogen or oxygen atom. So, directly balance the charge by adding electrons to the right hand side,
Multiply equation (10) by
Cancel similar terms on both the sides. The final equation is,
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry: An Atoms First Approach
- The blood alcohol (C2H5OH) level can be determined by titrating a sample of blood plasma with an acidic potassium di-chromate solution, resulting in the production of Cr3+ (aq) and carbon dioxide. The reaction can be monitored because the dichromate ion (Cr2O72) is orange in solution, and the Cr3+ ion is green. The balanced equations is 16H+(aq) + 2Cr2O72(aq) + C2H5OH(aq) 4Cr4+(aq) + 2CO2(g) + 11H2O(l) This reaction is an oxidationreduction reaction. What species is reduced, and what species is oxidized? How many electrons are transferred in the balanced equation above?arrow_forwardTriiodide ions are generated in solution by the following (unbalanced) reaction in acidic solution: IO3(aq) + I(aq) I3(aq) Triiodide ion concentration is determined by titration with a sodium thiosulfate (Na2S2O3) solution. The products are iodide ion and tetrathionate ion (S4O6). a. Balance the equation for the reaction of IO3 with I ions. b. A sample of 0.6013 g of potassium iodate was dissolved in water. Hydrochloric acid and solid potassium iodide were then added. What is the minimum mass of solid KI and the minimum volume of 3.00 M HQ required to convert all of the IO3 ions to I ions? c. Write and balance the equation for the reaction of S2O32 with I3 in acidic solution. d. A 25.00-mL sample of a 0.0100 M solution of KIO. is reacted with an excess of KI. It requires 32.04 mL of Na2S2O3 solution to titrate the I3 ions present. What is the molarity of the Na2S2O3 solution? e. How would you prepare 500.0 mL of the KIO3 solution in part d using solid KIO3?arrow_forwardThe Toliens test for the presence of reducing sugars (say, in a urine sample) involves treating the sample with silver ions in aqueous ammonia. The result is the formation of a silver mirror within the reaction vessel if a reducing sugar is present. Using glucose, C6H12O6, to illustrate this test, the oxidation-reduction reaction occurring is C6H12O6 (aq) + 2 Ag+(aq) + 2OH(aq) C6H12O7(aq) + 2 Ag(s) + H2O() What has been oxidized, and what has been reduced? What is the oxidizing agent, and what is the reducing agent? Tolien's test. The reaction of silver ions with a sugar such as glucose produces metallic silver. (a) The set-up for the reaction. (b) The silvered test tubearrow_forward
- One of the few industrial-scale processes that produce organic compounds electrochemically is used by the Monsanto Company to produce1,4-dicyanobutane. The reduction reaction is 2CH2CHCH+2H++2eNC(CH2)4CN The NC(CH2)4CN is then chemically reduced using hydrogen gas to H2N(CH2)6NH2, which is used in the production of nylon. What current must be used to produce 150.kg NC(CH2)4CN per hour?arrow_forwardChromium has been investigated as a coating for steel cans. The thickness of the chromium film is determined by dissolving a sample of a can in acid and oxidizing the resulting Cr3+ to Cr2O72 with the peroxydisulfate ion: S2O82(aq) + Cr3+(aq) + H2O(l) Cr2O72(aq) + SO42(aq) + H+(aq) (Unbalanced) After removal of unreacted S2O82 an excess of ferrous ammonium sulfate [Fe(NH4)2(SO4)26H2O] is added, reacting with Cr2O72 produced from the first reaction. The unreacted Fe2+ from the excess ferrous ammonium sulfate is titrated with a separate K2Cr2O7 solution. The reaction is: H+(aq) + Fe2+(aq) + Cr2O72(aq) Fe3+(aq) + Cr3+(aq) + H2O(l) (Unbalanced) a. Write balanced chemical equations for the two reactions. b. In one analysis, a 40.0-cm2 sample of a chromium-plated can was treated according to this procedure. After dissolution and removal of excess S2O82, 3.000 g of Fe(NH4)2(SO4)26H2O was added. It took 8.58 mL of 0.0520 M K2Cr2O7 solution to completely react with the excess Fe2+. Calculate the thickness of the chromium film on the can. (The density of chromium is 7.19 g/cm3)arrow_forwardDetermine the oxidation states of the elements in the following compounds: (a) Nal (b) GdCl3 (c) LiNO3 (d) H2Se (e) Mg2Si (f) RbO2, rubidium superoxide (g) HFarrow_forward
- The iron content of hemoglobin is determined by destroying the hemoglobin molecule and producing small water-soluble ions and molecules. The iron in the aqueous solution is reduced to iron(II) ion and then titrated against potassium permanganate. In the titration, iron(ll) is oxidized to iron(III) and permanganate is reduced to manganese(II) ion. A 5.00-g sample of hemoglobin requires 32.3 mL of a 0.002100 M solution of potassium permanganate. The reaction with permanganate ion is MnO4(aq)+8H+(aq)+5Fe2+(aq)Mn2+(aq)+5Fe3+(aq)+4H2O What is the mass percent of iron in hemoglobin?arrow_forward1. If you wish to convert 0.0100 mol of Au3+ (aq) ions into Au(s) in a “gold-plating” process, how long must you electrolyze a solution if the current passing through the circuit is 2.00 amps? 483 seconds 4.83 104 seconds 965 seconds 1450 secondsarrow_forwardThe mineral dolomite contains magnesium carbon-ate. This reacts with hydrochloric add. MgCO3(s) + 2 HCl(aq) CO2(g) + MgCl2(aq) + H2O() (a) Write the net ionic equation for this reaction and identify the spectator ions. (b) What type of reaction is this?arrow_forward
- Four metals, A, B, C, and D, exhibit the following properties: (a) Only A and C react with 1.0 M hydrochloric acid to give H2(g). (b) When C is added to solutions of the ions of the other metals, metallic B, D, and A are formed. (c) Metal D reduces Bn+ to give metallic B and Dn+. Based on this information, arrange the four metals in order of increasing ability to act as reducing agents.arrow_forward4.112 A metallurgical firm wishes to dispose of 1300 gallons of waste sulfuric acid whose molarity is 1.37 M. Before disposal, it will be reacted with calcium hydroxide (slaked lime), which costs $0.23 per pound. (a) Write the balanced chemical equation for this process. (b) Determine the cost that the firm will incur from this use of slaked lime.arrow_forwardTo analyze an iron-containing compound, you convert all the iron to Fe2+ in aqueous solution and then titrate the solution with standardized KMnO4. The balanced, net ionic equation is MnO4(aq) + 5 Fe2(aq) + 8 H3O+(aq) Mn2(aq) + 5 Fe3+(aq) + 12 H2O(l) A 0.598-g sample of the iron-containing compound requires 22.25 mL of 0.0123 M KMnO4 for titration to the equivalence point. What is the mass percent of iron in the sample?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning