Make a sketch of an
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Introductory Chemistry (6th Edition)
- A voltaic cell is constructed in which one half-cell consists of a silver wire in an aqueous solution of AgNO3.The other half cell consists of an inert platinum wire in an aqueous solution containing Fe2+(aq) and Fe3+(aq). (a) Calculate the cell potential, assuming standard conditions. (b) Write the net ionic equation for the reaction occurring in the cell. (c) Which electrode is the anode and which is the cathode? (d) If [Ag+] is 0.10 M, and [Fe2+] and [Fe3+] are both 1.0 M, what is the cell potential? Is the net cell reaction still that used in part (a)? If not, what is the net reaction under the new conditions?arrow_forwardThe voltaic cell is represented as Zn(s)Zn2+(1.0M)Cu2+(1.0M)Cu(s) Which of the following statements is not true of this cell? a The mass of the zinc electrode, Zn(s), decreases as the cell runs. b The copper electrode is the anode. c Electrons flow through the external circuit from the zinc electrode to the copper electrode. d Reduction occurs at the copper electrode as the cell runs. e The concentration of Cu2+ decreases as the cell runs.arrow_forwardDraw a diagram of each cell. Label the anode, the cathode, the species in each half-cell solution, the direction of electron movement in an external circuit, and thedirection of movement of ions within the cell. (a) Cu(s) | Cu2+(aq) || Fe2+(aq) |Fe(s) (b) Pt(s) | H2O2(aq), H+(aq) || Fe2+(aq), Fe3+(aq) | Pt(s)arrow_forward
- A voltaic cell is constructed using the reaction of chromium metal and iron(II) ions. 2 Cr(s) + 3 Fe2+(aq) 2 Cr3+(aq) + 3 Fe(s) Complete the following sentences: Electrons in the external circuit flow from the ________ electrode to the ______ electrode. Negative ions move in the salt bridge from the ________ half-cell to the ______ half-cell. The half-reaction at the anode is _______ and that at the cathode is ________.arrow_forwardConsider the following cell running under standard conditions: Fe(s)Fe2+(aq)Al3+(aq)Al(s) a Is this a voltaic cell? b Which species is being reduced during the chemical reaction? c Which species is the oxidizing agent? d What happens to the concentration of Fe3+(aq) as the reaction proceeds? e How does the mass of Al(s) change as the reaction proceeds?arrow_forwardGive the notation for a voltaic cell whose overall cell reaction is Mg(s)+2Ag+(aq)Mg2+(aq)+2Ag(s) What are the half-cell reactions? Label them as anode or cathode reactions. What is the standard cell potential of this cell?arrow_forward
- You have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by a writing the symbols of the elements and ions in the appropriate areas (both solutions and electrodes). b identifying the anode and cathode. c indicating the direction of electron flow through the external circuit. d indicating the cell potential (assume standard conditions, with no current flowing). e writing the appropriate half-reaction under each of the containers. f indicating the direction of ion flow in the salt bridge. g identifying the species undergoing oxidation and reduction. h writing the balanced overall reaction for the cell.arrow_forwardConsider a cell based on the following half-reactions: a. Draw this cell under standard conditions, labeling the anode, the cathode, the direction of electron flow, and the concentrations, as appropriate. b. When enough NaCl(s) is added to the compartment containing gold to make the [Cl] = 0.10 M, the cell potential is observed to be 0.31 V. Assume that Au3+ is reduced and assume that the reaction in the compartment containing gold is Au3+(aq)+4Cl(aq)AuCl4(aq) Calculate the value of K for this reaction at 25C.arrow_forwardUse the data from the table of standard reduction potentials in Appendix H to calculate the standard potential of the cell based on each of the following reactions. In each case, state whether the reaction proceeds spontaneously as written or spontaneously in the reverse direction under standard-state conditions. (a) H2(g)+Cl2(g)2H+(aq)+2Cl(aq) (b) Al3+(aq)+3Cr2+(aq)Al(s)+3Cr3+(aq) (c) Fe2+(aq)+Ag+(aq)Fe3+(aq)+Ag(s)arrow_forward
- In principle, a battery could be made from aluminum metal and chlorine gas. (a) Write a balanced equation for the reaction thatwould occur in a battery using Al3+(aq) | Al(s) andCl2(g) | Cl(aq) half-cells. (b) Identify the half-reaction at the anode and at the cathode. Do electrons flow from the Al electrode when thecell does work? Explain. (c) Calculate the standard potential, Ecell, for the battery.arrow_forwardConsider the electrolysis of water in the presence of very dilute H2SO4. What species is produced at the anode? Atthe cathode? What are the relative amounts of the speciesproduced at the two electrodes?arrow_forwardAn aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning