Which of your group’s cells do you think would produce the largest voltage? Why?
A promising technology based on a
a. Assign oxidation states to each atom in the reaction.
b. Determine what is being oxidized and what is being reduced.
c. Write and balance the separate half-reactions. (Hint: Methanol reacts to form carbon dioxide, and oxygen reacts to form water.)
d. Balance the overall reaction if it occurs in acidic solution.
e. Methanol fuel cells must be designed to allow
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Introductory Chemistry (6th Edition)
- A voltaic cell is constructed in which one half-cell consists of a silver wire in an aqueous solution of AgNO3.The other half cell consists of an inert platinum wire in an aqueous solution containing Fe2+(aq) and Fe3+(aq). (a) Calculate the cell potential, assuming standard conditions. (b) Write the net ionic equation for the reaction occurring in the cell. (c) Which electrode is the anode and which is the cathode? (d) If [Ag+] is 0.10 M, and [Fe2+] and [Fe3+] are both 1.0 M, what is the cell potential? Is the net cell reaction still that used in part (a)? If not, what is the net reaction under the new conditions?arrow_forwardA fuel cell designed to react grain alcohol with oxygen has the following net reaction: C2H5OH(l)+3O2(g)2CO2(g)+3H2O(l) The maximum work that 1 mole of alcohol can do is 1.32 103 kJ. What is the theoretical maximum voltage this cell can achieve at 25C?arrow_forwardConsider a galvanic cell based on the following half-reactions: a. What is the expected cell potential with all components in their standard states? b. What is the oxidizing agent in the overall cell reaction? c. What substances make up the anode compartment? d. In the standard cell, in which direction do the electrons flow? e. How many electrons are transferred per unit of cell reaction? f. If this cell is set up at 25C with [Fe2+] = 2.00 104 M and [La3+] = 3.00 103 M, what is the expected cell potential?arrow_forward
- You want to set up a series of voltaic cells with specific cell potentials. A Zn2+(aq, 1.0 M)| Zn(s) half-cell is in one compartment. Identify several half-cells that you could use so that the cell potential will be close to (a) 1.1 V and (b) 0.50 V. Consider cells in which the zinc cell can be either the cathode or the anode.arrow_forwardConsider a battery made from one half-cell that consists of a capper electrode in 1 M CuSO4 solution and another half—cell that consists of a lead electrode in 1 M Pb(NO3)2 solution. (a) What are the reactions at the anode, cathode, and the overall reaction? (b) What is the standard cell potential for the battery? (c) Most devices designed to use dry-cell batteries can operate between 1.0 and 1.5 V. Could this tell he used to make a battery that could replace a dry-cell battery? Why or why not. (d) Suppose sulfuric acid is added to the half—cell with the lead electrode and some PbSO4(s) forms. Would the cell potential increase, decrease, or remain the same?arrow_forwardFor the cell: Cr|Cr3+Co2+|Co E° is 0.46 V. The same cell was prepared in the laboratory at standard conditions. The voltage obtained was 0.40 V. A possible explanation for the difference is (a) the surface area of the chromium electrode was smaller than the cobalt electrode. (b) the mass of the chromium electrode was larger than the mass of the cobalt electrode. (c) the concentration of Cr(NO3)2 solution used was less than 1.0 M. (d) the concentration of Cr(NO3)2 solution used was less than 1.0 M. (e) the volume of Cr(NO3)2 solution used was larger than the volume of Cr(NO3)2 solution used.arrow_forward
- Manganese may play an important role in chemical cycles in the oceans. Two reactions involving manganese (in acid solution) are the reduction of nitrate ions (to NO) with Mn2+ ions and the oxidation of ammonium ions (to N2) with MnO2. (a) Write balanced chemical equations for these reactions (in acid solution). (b) Calculate Ecell for the reactions. (One half-reaction potential you need is for the reduction of N2 to NH4+, E = 0.272 V.)arrow_forwardConsider a cell based on the following half-reactions: a. Draw this cell under standard conditions, labeling the anode, the cathode, the direction of electron flow, and the concentrations, as appropriate. b. When enough NaCl(s) is added to the compartment containing gold to make the [Cl] = 0.10 M, the cell potential is observed to be 0.31 V. Assume that Au3+ is reduced and assume that the reaction in the compartment containing gold is Au3+(aq)+4Cl(aq)AuCl4(aq) Calculate the value of K for this reaction at 25C.arrow_forwardConsider the following galvanic cell: Calculate the concentrations of Ag+(aq) and Ni2+(aq) once the cell is dead.arrow_forward
- Which product, Ca or H2, is more likely to form at the cathode in the electrolysis of CaCl2? Explain your reasoning.arrow_forward13.104 (a) What happens when a current is passed through a solution of dilute sulfuric acid to carry out electrolysis? (b) A 5.00-A current is passed through a dilute solution of sulfuric acid for 30.0 min. What mass of oxygen is produced?arrow_forwardConsider the cell Pt|H2|H+H+|H2|Pt In the anode half-cell, hydrogen gas at 1.0 atm is bubbled over a platinum electrode dipping into a solution that has a pH of 7.0. The other half-cell is identical to the first except that the solution around the platinum electrode has a pH of 0.0. What is the cell voltage?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning