Introductory Chemistry (6th Edition)
6th Edition
ISBN: 9780134302386
Author: Nivaldo J. Tro
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 5SAQ
Sodium reacts with water according to the reaction:
Identify the element that is reduced.
a. Na
b. O
c. H
d. none of the above
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
10. In the reaction, Fe203(s) + 3CO(g)
2Fe(l) + 3C02(g)
---
a. carbon monoxide is reduced
c. carbon monoxide is the oxidizing agent
L
b. iron(III) oxide is oxidized
d. iron(III) oxide is the oxidizing agent
10. Careful decomposition of ammonium nitrate gives laughing gas, (N2O) and water. Balance the
equation for this reaction and determine the coefficient for water.
NH4NO3 → N2O + ?_H20
IAS
Identify the reactant that is being reduced, the reactant that is being oxidized, the reducing agent, the oxidizing agent, and determine how many electrons have been transferred from one atom to another in the following equation.
Al + P → AlP
Aluminum:
Phosphorus:
Determine the oxidation number of each element in aluminum phosphide.
Al:
P:
Chapter 16 Solutions
Introductory Chemistry (6th Edition)
Ch. 16 - Q1. Which substance is being oxidized in the...Ch. 16 - What always happens to an oxidizing agent during a...Ch. 16 - Q3. What is the oxidation state of carbon in...Ch. 16 - Q4. In which compound does phosphorus have the...Ch. 16 - Sodium reacts with water according to the...Ch. 16 - Q6. How many electrons are exchanged when this...Ch. 16 - Prob. 7SAQCh. 16 - Prob. 8SAQCh. 16 - Prob. 9SAQCh. 16 - Prob. 10SAQ
Ch. 16 - 1. What is a fuel-cell electric vehicle?
Ch. 16 - Prob. 2ECh. 16 - Prob. 3ECh. 16 - Prob. 4ECh. 16 - Prob. 5ECh. 16 - Prob. 6ECh. 16 - Prob. 7ECh. 16 - Prob. 8ECh. 16 - Prob. 9ECh. 16 - Prob. 10ECh. 16 - Prob. 11ECh. 16 - Prob. 12ECh. 16 - Prob. 13ECh. 16 - Prob. 14ECh. 16 - Prob. 15ECh. 16 - Prob. 16ECh. 16 - Prob. 17ECh. 16 - Prob. 18ECh. 16 - Prob. 19ECh. 16 - 20. Any half-reaction in the activity series will...Ch. 16 - How can you use the activity series to determine...Ch. 16 - What is electrical current? Explain how a simple...Ch. 16 - Prob. 23ECh. 16 - Prob. 24ECh. 16 - Prob. 25ECh. 16 - Prob. 26ECh. 16 - Prob. 27ECh. 16 - Prob. 28ECh. 16 - Prob. 29ECh. 16 - Prob. 30ECh. 16 - Prob. 31ECh. 16 - Prob. 32ECh. 16 - Prob. 33ECh. 16 - Prob. 34ECh. 16 - Prob. 35ECh. 16 - Prob. 36ECh. 16 - Prob. 37ECh. 16 - 38. For each of the reactions in Problem 36,...Ch. 16 - Prob. 39ECh. 16 - Prob. 40ECh. 16 - Prob. 41ECh. 16 - Prob. 42ECh. 16 - Prob. 43ECh. 16 - Prob. 44ECh. 16 - 45. Assign an oxidation state to each element or...Ch. 16 - Prob. 46ECh. 16 - 47. Assign an oxidation state to each atom in each...Ch. 16 - Prob. 48ECh. 16 - Prob. 49ECh. 16 - Prob. 50ECh. 16 - Prob. 51ECh. 16 - Prob. 52ECh. 16 - Prob. 53ECh. 16 - Prob. 54ECh. 16 - Prob. 55ECh. 16 - Prob. 56ECh. 16 - Prob. 57ECh. 16 - Assign an oxidation state to each element in each...Ch. 16 - 59. Use oxidation states to identify the oxidizing...Ch. 16 - Prob. 60ECh. 16 - 61. Balance each redox reaction using the...Ch. 16 - Prob. 62ECh. 16 - Classify each half-reaction occurring in acidic...Ch. 16 - 64. Classify each half-reaction occurring in...Ch. 16 - Use the half-reaction method to balance each redox...Ch. 16 - Use the half-reaction method to balance each redox...Ch. 16 - Prob. 67ECh. 16 - Prob. 68ECh. 16 - Balance each redox reaction occurring in basic...Ch. 16 - Prob. 70ECh. 16 - Prob. 71ECh. 16 - Prob. 72ECh. 16 - Prob. 73ECh. 16 - Prob. 74ECh. 16 - Prob. 75ECh. 16 - Prob. 76ECh. 16 - 77. Determine whether each redox occurs...Ch. 16 - Prob. 78ECh. 16 - 79. Suppose you wanted to cause ions to come out...Ch. 16 - Prob. 80ECh. 16 - Prob. 81ECh. 16 - 82. Which metal in the activity series is oxidized...Ch. 16 - Prob. 83ECh. 16 - Prob. 84ECh. 16 - Prob. 85ECh. 16 - 86. Make a sketch of an electrochemical cell with...Ch. 16 - Prob. 87ECh. 16 - The following reaction occurs at the cathode of an...Ch. 16 - Prob. 89ECh. 16 - Prob. 90ECh. 16 - Prob. 91ECh. 16 - Make a sketch of an electrolysis cell that could...Ch. 16 - Prob. 93ECh. 16 - Prob. 94ECh. 16 - 95. Determine whether each reaction is a redox...Ch. 16 - Prob. 96ECh. 16 - Consider the unbalanced redox reaction....Ch. 16 - Prob. 98ECh. 16 - Prob. 99ECh. 16 - Prob. 100ECh. 16 - Prob. 101ECh. 16 - 102. A 1.012-mL sample of a salt containing is...Ch. 16 - Prob. 103ECh. 16 - Prob. 104ECh. 16 - Determine whether HI can dissolve each metal...Ch. 16 - 106. Determine whether HI can dissolve each metal...Ch. 16 - Prob. 107ECh. 16 - 108. One graduated cylinder containing 1.00 mL of...Ch. 16 - Prob. 109ECh. 16 - Prob. 110ECh. 16 - Prob. 111ECh. 16 - Prob. 112ECh. 16 - 113. Consider the molecular view of an...Ch. 16 - Which of your group’s cells do you think would...Ch. 16 - Data Interpretation and Analysis
116. We can use...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A novel process for obtaining magnesium from sea water involves several reactions. Write a balanced chemical equation for each step of the process. (a) The first step is the decomposition of solid calcium carbonate from seashells to form solid calcium oxide and gaseous carbon dioxide. (b) The second step is the formation of solid calcium hydroxide as the only product from the reaction of the solid calcium oxide with liquid water. (c) Solid calcium hydroxide is then added to the seawater, reacting with dissolved magnesium chloride to yield solid magnesium hydroxide and aqueous calcium chloride. (d) The solid magnesium hydroxide is added to a hydrochloric acid solution, producing dissolved magnesium chloride and liquid water. (e) Finally, the magnesium chloride is melted and electrolyzed to yield liquid magnesium metal and diatomic chlorine gas.arrow_forwardSome metals, such as iron, can be oxidized to more than one oxidation state. Obtain the balanced net ionic equations for the following oxidation reduction reactions, in which nitric acid is reduced to nitric oxide, NO. a Oxidation of iron metal to iron(II) ion by nitric acid. b Oxidation of iron(II) ion to iron(III) ion by nitric acid. c Oxidation of iron metal to iron(III) by nitric acid. [Consider adding the a and b equations.]arrow_forwardShould heat be added as a reactant or as a product to each of the following equations for chemical reactions based on the given thermicity for the reaction? a. H2 + Cl2 2HCl (exothermic) b. 4NO + 6H2O 4NH3 + 5O2 (endothermic) c. 2H2O + 2Cl2 4HCl + O2 (endothermic) d. 2H2O 2H2 + O2 (exothermic)arrow_forward
- . To obtain useful electrical energy from an oxidation-reduction process, we must set up the reaction in such a way that the Oxidation half-reaction and the reduction half-reaction are physically one _____another.arrow_forwardWhat is G for the following reaction? 2Br(aq)+Cl2(g)Br2(l)+2Cl(aq) Use data given in Table 19.1.arrow_forwardWhich two of the following reactions are oxidation-reduction reactions? Explain your answer briefly. Classify the remaining reaction. (a) CdC12(aq) + Na2S(aq) CdS(s) + 2 NaCl(aq) (b) 2 Ca(s) + O2(g) 2 CaO(s) (c) 4 Fe(OH)2(s) + 2 H2O() + O2(g) 4 Fe(OH)3(s)arrow_forward
- Suppose you have three different metals. A, B, and C. When metals A and B come into contact. B confides and A does not corrode. When metals A and C come into contact, A corrodes and C does not corrode. Based on this information, which metal corrodes and which metal does not corrode when B and C come into contact?arrow_forwardThe Toliens test for the presence of reducing sugars (say, in a urine sample) involves treating the sample with silver ions in aqueous ammonia. The result is the formation of a silver mirror within the reaction vessel if a reducing sugar is present. Using glucose, C6H12O6, to illustrate this test, the oxidation-reduction reaction occurring is C6H12O6 (aq) + 2 Ag+(aq) + 2OH(aq) C6H12O7(aq) + 2 Ag(s) + H2O() What has been oxidized, and what has been reduced? What is the oxidizing agent, and what is the reducing agent? Tolien's test. The reaction of silver ions with a sugar such as glucose produces metallic silver. (a) The set-up for the reaction. (b) The silvered test tubearrow_forwardWrite equations for respiration and photosynthesis. For each reaction, label the substances that are oxidized and reduced. Why are these reactions important?arrow_forward
- Copper metal can reduce silver ions to metallic silver. The copper is oxidized to copper ions according to the reaction 2Ag+(aq)+Cu(s)Cu2+(aq)+2Ag(s)A copper strip with a mass of 2.00 g is dipped into a solution of AgNO3. After some time has elapsed, the copper strip is coated with silver. The strip is removed from the solution, dried, and weighed. The coated strip has a mass of 4.18 g. What are the masses of copper and silver metals in the strip? (Hint: Remember that the copper metal is being used up as silver metal forms.)arrow_forwardBromine is obtained from sea water by the following redox reaction: Cl2(g) + 2 NaBr(aq) 2 NaCl(aq) + Br2() (a) What has been oxidized? What has been reduced? (b) Identify the oxidizing and reducing agents.arrow_forwardHydrogen chloride gas dissolves in water to form hydrochloric acid (an ionic solution). HCl(g)H2OH+(aq)+Cl(aq) Find H for the above reaction. The data are given in Table 6.2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY