General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 16.138MP
A 1.00 L volume of gaseous ammonia at 25.0 °C and 744 mm Hg was dissolved in enough water to make 500.0 mL of aqueous ammonia at 2.0 °C. What is Kb for NH3 at 2.0 °C, and what is the pH of the solution? Assume that ΔH° and ΔS° are independent of temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
General Chemistry: Atoms First
Ch. 16.1 - Predicting the Sign of S Predict the sign of S in...Ch. 16.2 - Prob. 16.2PCh. 16.2 - Prob. 16.3CPCh. 16.3 - Which state has the higher entropy? Explain in...Ch. 16.5 - Calculate the standard entropy of reaction at 25C...Ch. 16.6 - By determining the sign of Stotal, show whether...Ch. 16.7 - Consider the decomposition of gaseous N2O4:...Ch. 16.7 - The following data apply to the vaporization of...Ch. 16.7 - What are the signs (+, , or 0) of H, S, and G for...Ch. 16.8 - Consider the thermal decomposition of calcium...
Ch. 16.8 - Consider the following endothermic decomposition...Ch. 16.9 - (a)Using values of Gf in Appendix B, calculate the...Ch. 16.10 - Calculate G for the formation of ethylene (C2H4)...Ch. 16.10 - Consider the following gas-phase reaction of A2...Ch. 16.11 - Given the data in Appendix B, calculate Kp at 25 C...Ch. 16.11 - Use the data in Appendix B to calculate the vapor...Ch. 16.11 - At 25 C, Kw for the dissociation of water is 1.0 ...Ch. 16.11 - Prob. 16.18PCh. 16.11 - Prob. 16.19PCh. 16 - Ideal gases A (red spheres) and B (blue spheres)...Ch. 16 - What are the signs (+, , or 0) of H, S, and G for...Ch. 16 - What are the signs (+, , or 0) of H, S, and G for...Ch. 16 - An ideal gas is compressed at constant...Ch. 16 - Consider the following spontaneous reaction of A2...Ch. 16 - Consider the dissociation reactionA2(g)2A(g). The...Ch. 16 - Prob. 16.26CPCh. 16 - Prob. 16.27CPCh. 16 - Prob. 16.28CPCh. 16 - Prob. 16.29CPCh. 16 - Prob. 16.30SPCh. 16 - Prob. 16.31SPCh. 16 - Prob. 16.32SPCh. 16 - Prob. 16.33SPCh. 16 - Prob. 16.34SPCh. 16 - Prob. 16.35SPCh. 16 - Prob. 16.36SPCh. 16 - Prob. 16.37SPCh. 16 - Prob. 16.38SPCh. 16 - Predict the sign of S for each process in Problem...Ch. 16 - Prob. 16.40SPCh. 16 - Prob. 16.41SPCh. 16 - Prob. 16.42SPCh. 16 - Prob. 16.43SPCh. 16 - Prob. 16.44SPCh. 16 - Prob. 16.45SPCh. 16 - Which state in each of the following pairs has the...Ch. 16 - Which State in each of the following pairs has the...Ch. 16 - Prob. 16.48SPCh. 16 - Prob. 16.49SPCh. 16 - Prob. 16.50SPCh. 16 - Which substance in each of the following pairs...Ch. 16 - Prob. 16.52SPCh. 16 - Prob. 16.53SPCh. 16 - Prob. 16.54SPCh. 16 - Prob. 16.55SPCh. 16 - Prob. 16.56SPCh. 16 - Prob. 16.57SPCh. 16 - Prob. 16.58SPCh. 16 - Prob. 16.59SPCh. 16 - Prob. 16.60SPCh. 16 - Prob. 16.61SPCh. 16 - In lightning storms, oxygen is converted to ozone:...Ch. 16 - Sulfur dioxide emitted from coal-fired power...Ch. 16 - Elemental mercury can be produced from its oxide:...Ch. 16 - Prob. 16.65SPCh. 16 - For the vaporization of benzene, Hvap = 30.7kJ/mol...Ch. 16 - For the melting of sodium chloride, Hfusion =...Ch. 16 - Prob. 16.68SPCh. 16 - Prob. 16.69SPCh. 16 - Prob. 16.70SPCh. 16 - Prob. 16.71SPCh. 16 - Prob. 16.72SPCh. 16 - Given the data in Problem 16.67, calculate G for...Ch. 16 - Prob. 16.74SPCh. 16 - Prob. 16.75SPCh. 16 - Prob. 16.76SPCh. 16 - Prob. 16.77SPCh. 16 - Prob. 16.78SPCh. 16 - Use the data in Appendix B to calculate H and S...Ch. 16 - Prob. 16.80SPCh. 16 - Prob. 16.81SPCh. 16 - Use the data in Appendix B to tell which of the...Ch. 16 - Prob. 16.83SPCh. 16 - Prob. 16.84SPCh. 16 - Prob. 16.85SPCh. 16 - Ethanol is manufactured in industry by the...Ch. 16 - Sulfur dioxide in the effluent gases from...Ch. 16 - Prob. 16.88SPCh. 16 - Prob. 16.89SPCh. 16 - Prob. 16.90SPCh. 16 - Prob. 16.91SPCh. 16 - Prob. 16.92SPCh. 16 - What is G for the formation of solid uranium...Ch. 16 - Prob. 16.94SPCh. 16 - Prob. 16.95SPCh. 16 - What is the relationship between the standard...Ch. 16 - What is the relationship between the standard...Ch. 16 - Prob. 16.98SPCh. 16 - Prob. 16.99SPCh. 16 - Prob. 16.100SPCh. 16 - At 25 C, Ka for acid dissociation of aspirin...Ch. 16 - Prob. 16.102SPCh. 16 - Calculate the equilibrium partial pressure of...Ch. 16 - Ethylene oxide, C2H4O, is used to make antifreeze...Ch. 16 - The first step in the commercial production of...Ch. 16 - Prob. 16.106CHPCh. 16 - Prob. 16.107CHPCh. 16 - Prob. 16.108CHPCh. 16 - Prob. 16.109CHPCh. 16 - Prob. 16.110CHPCh. 16 - The standard free-energy change at 25 C for the...Ch. 16 - Prob. 16.112CHPCh. 16 - Prob. 16.113CHPCh. 16 - Prob. 16.114CHPCh. 16 - Prob. 16.115CHPCh. 16 - Use the data in Appendix B to calculate H, S, and...Ch. 16 - Troutons rule says that the ratio of the molar...Ch. 16 - Prob. 16.118CHPCh. 16 - Prob. 16.119CHPCh. 16 - Prob. 16.120CHPCh. 16 - Use the data in Appendix B to calculate the...Ch. 16 - Prob. 16.122CHPCh. 16 - Prob. 16.123CHPCh. 16 - Prob. 16.124CHPCh. 16 - Prob. 16.125CHPCh. 16 - Prob. 16.126CHPCh. 16 - Prob. 16.127CHPCh. 16 - Prob. 16.128CHPCh. 16 - Prob. 16.129CHPCh. 16 - Prob. 16.130CHPCh. 16 - Prob. 16.131CHPCh. 16 - Prob. 16.132CHPCh. 16 - Prob. 16.133MPCh. 16 - Prob. 16.134MPCh. 16 - One step in the commercial synthesis of sulfuric...Ch. 16 - Prob. 16.136MPCh. 16 - Prob. 16.137MPCh. 16 - A 1.00 L volume of gaseous ammonia at 25.0 C and...Ch. 16 - Consider the unbalanced equation:...Ch. 16 - A mixture of NO2 and N2O4, each at an initial...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- a Calculate K1, at 25C for sulfurous acid: H2SO3(aq)H+(aq)+HSO3(aq) b Which thermodynamic factor is the most significant in accounting for the fact that sulfurous acid is a weak acid? Why?arrow_forwardActually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forwarda Calculate K1, at 25C for phosphoric acid: H3PO4(aq)H+(aq)+H2PO4(aq) b Which thermodynamic factor is the most significant in accounting for the fact that phosphoric acid is a weak acid? Why ?arrow_forward
- What is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the explosive decomposition of TNT? Use your knowledge of TNT and the chemical equation, particularly the phases, to answer this question. (Thermodynamic data for TNT are not in Appendix G.) 2C7H5N3O6(s) 3N2(g) + 5H2O() + 7C(s) + 7CO(g)arrow_forwardWhat information can be determined from G for a reaction? Does one get the same information from G, the standard free energy change? G allows determination of the equilibrium constant K for a reaction. How? How can one estimate the value of K at temperatures other than 25C for a reaction? How can one estimate the temperature where K = 1 for a reaction? Do all reactions have a specific temperature where K = 1?arrow_forwardAdenosine triphosphate, ATP, is used as a free-energy source by biological cells. (See the essay on page 624.) ATP hydrolyzes in the presence of enzymes to give ADP: ATP(aq)+H2O(l)ADP(aq)+H2PO4(aq);G=30.5kJ/molat25C Consider a hypothetical biochemical reaction of molecule A to give molecule B: A(aq)B(aq);G=+15.0kJ/molat25C Calculate the ratio [B]/[A] at 25C at equilibrium. Now consider this reaction coupled to the reaction for the hydrolysis of ATP: A(aq)+ATP(aq)+H2O(l)B(aq)+ADP(aq)+H2PO4(aq) If a cell maintains a high ratio of ATP to ADP and H2PO4 by continuously making ATP, the conversion of A to B can be made highly spontaneous. A characteristic value of this ratio is [ATP][ADP][H2PO4]=500 Calculate the ratio [B][A] in this case and compare it with the uncoupled reaction. Compared with the uncoupled reaction, how much larger is this ratio when coupled to the hydrolysis of ATP?arrow_forward
- Elemental boron, in the form of thin fibers, can be made by reducing a boron halide with H2. BCl3(g) + 3/2 H2(g) B(s) + 3HCl(g) Calculate H, S, and G at 25 C for this reaction. Is the reaction predicted to be product favored at equilibrium at 25 C? If so, is it enthalpy driven or entropy driven?arrow_forwardFor the decomposition of formic acid, HCOOH(l)H2O(l)+CO(g) H = +29 kJ/mol at 25C. a Does the tendency of this reaction to proceed to a state of minimum energy favor the formation of water and carbon monoxide or formic acid? Explain. b Does the tendency of this reaction to proceed to a state of maximum entropy favor the formation of products or reactants? Explainarrow_forwardAccording to a source, lithium peroxide (Li2O2) decomposes to lithium oxide (Li2O) and oxygen gas at about 195C. If the standard enthalpy change for this decomposition is 33.9 kJ/mol, what would you give as an estimate for the standard entropy change for this reaction? Explain.arrow_forward
- A crucial reaction for the production of synthetic fuels is the production of H2 by the reaction of coal with steam. The chemical reaction is C(s) + H2O(g) CO(g) + H2(g) (a) Calculate rG for this reaction at 25 C, assuming C(s) is graphite. (b) Calculate Kp for the reaction at 25 C. (c) Is the reaction predicted to be product-favored at equilibrium at 25 C? If not, at what temperature will it become so?arrow_forwardThe equilibrium constant for a certain reaction increases by a factor of 6.67 when the temperature is increased from 300.0 K to 350.0 K. Calculate the standard change in enthalpy (H) for this reaction (assuming H is temperature-independent).arrow_forwardConsider the reaction of 2 mol H2(g) at 25C and 1 atm with 1 mol O2(g) at the same temperature and pressure to produce liquid water at these conditions. If this reaction is run in a controlled way to generate work, what is the maximum useful work that can be obtained? How much entropy is produced in this case?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY