Brock Biology of Microorganisms (15th Edition)
15th Edition
ISBN: 9780134261928
Author: Michael T. Madigan, Kelly S. Bender, Daniel H. Buckley, W. Matthew Sattley, David A. Stahl
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 15.6, Problem 2MQ
Summary Introduction
The green sulfur bacteria appear as straight or curved rods. Hydrogen and hydrogen sulfide compounds are used as the photosynthetic electron donors by the green sulfur bacteria. The green sulfur bacteria are present in marine habitats. These bacteria contain a photosynthetic apparatus called as chlorosomes.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The metabolic pathway below is used for the production of the purine nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) in eukaryotic cells. Assume each arrow represents a reaction catalyzed by a different enzyme. Using the principles of feedback inhibition, propose a regulatory scheme for this pathway that ensures an adequate supply of both AMP and GMP, and prevents the buildup of Intermediates A through G when supplies of both AMP and GMP are adequate.
QUESTION 27
Label the structures marked A, B, C and explain the role of structure A.
W
plasma membrane
For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).
BIUS
☐
Paragraph
Π " ΩΘΗ
Β
Open Sans, a...
10pt
EE
examples of synamptomorphy
Chapter 15 Solutions
Brock Biology of Microorganisms (15th Edition)
Ch. 15.1 - Why is it necessary to consider microbial...Ch. 15.1 - What are three reasons that functional traits...Ch. 15.1 - What is convergent evolution and how is it...Ch. 15.2 - What form of photosynthesis was most likely the...Ch. 15.2 - Which bacterial phyla contain phototrophs?Ch. 15.3 - What are the differentiating properties of the...Ch. 15.3 - Prob. 2MQCh. 15.3 - How are prochlorophytes, such as Prochlorococcus,...Ch. 15.4 - What is the source of the purple color from which...Ch. 15.4 - Prob. 2MQ
Ch. 15.4 - Compare and contrast the metabolism, morphology,...Ch. 15.5 - What are some similarities between purple...Ch. 15.5 - Prob. 2MQCh. 15.5 - Compare and contrast the metabolism of purple...Ch. 15.6 - Prob. 1MQCh. 15.6 - Prob. 2MQCh. 15.6 - Prob. 1CRCh. 15.7 - Prob. 1MQCh. 15.7 - Prob. 2MQCh. 15.7 - Prob. 1CRCh. 15.8 - What types of anoxygenic phototrophs contain...Ch. 15.8 - Prob. 2MQCh. 15.8 - In what ways is Chloracidobacterium thermophilum...Ch. 15.9 - What are the typical electron donors used by...Ch. 15.9 - What bacterial phyla are known to contain...Ch. 15.9 - Prob. 1CRCh. 15.10 - What are the typical electron donors used by...Ch. 15.10 - Prob. 2MQCh. 15.10 - In what ways are sulfur-reducing bacteria...Ch. 15.11 - Describe the energy and carbon metabolism of...Ch. 15.11 - What are some ecological strategies that sulfur...Ch. 15.11 - Prob. 1CRCh. 15.12 - What mechanisms do free-living diazotraphs use to...Ch. 15.12 - Prob. 2MQCh. 15.12 - What are some ways that diazotrophs protect...Ch. 15.13 - Under what conditions would you expect...Ch. 15.13 - Prob. 2MQCh. 15.13 - Prob. 1CRCh. 15.14 - In what phylogenetic groups are Geobacter and...Ch. 15.14 - Prob. 2MQCh. 15.14 - Prob. 1CRCh. 15.15 - What habitat characteristics govern the diversity...Ch. 15.15 - How do aerobic neutrophilic iron-oxidizers keep...Ch. 15.15 - Prob. 1CRCh. 15.16 - What is the difference between a methanotroph and...Ch. 15.16 - What is unique about the methanotroph...Ch. 15.16 - What are the differences between type I and type...Ch. 15.17 - Prob. 1MQCh. 15.17 - What are the different ways in which species of...Ch. 15.17 - Compare and contrast the life cycle of Myxococcus...Ch. 15.18 - Prob. 1MQCh. 15.18 - Prob. 2MQCh. 15.18 - Prob. 1CRCh. 15.19 - What are the major differences between spirochetes...Ch. 15.19 - Name two diseases of humans caused by spirochetes.Ch. 15.19 - Contrast the motility of spirochetes with that of...Ch. 15.20 - Prob. 1MQCh. 15.20 - Prob. 2MQCh. 15.20 - Contrast the life cycle of Hyphomicrobium with...Ch. 15.21 - Describe how a sheathed bacterium such as...Ch. 15.21 - List two metals that are oxidized by sheathed...Ch. 15.21 - In what environment might you expect to find...Ch. 15.22 - What benefit do magnetic bacteria accrue from...Ch. 15.22 - Would you expect to find greigite or magnetite in...Ch. 15.22 - In what way does a magnetosome contribute to the...Ch. 15 - Describe a key physiological feature of the...Ch. 15 - Describe the metabolism for each of the following...Ch. 15 - Using an example from each of the morphologically...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- examples of synamtomorphy.arrow_forwardE. Bar Graph Use the same technique to upload the completed image. We will use a different type of graph to derive additional information from the CO2 data (Fig A1.6.2) 1. Calculate the average rate of increase in COz concentration per year for the time intervals 1959-1969, 1969- 1979, etc. and write the results in the spaces provided. The value for 1959-1969 is provided for you as an example. 2. Plot the results as a bar graph. The 1959-1969 is plotted for you. 3. Choose the graph that looks the most like yours A) E BAR GRAPH We will use a different type of graph to derive additional information from the CU, data (rig. nive). Average Yearly Rate of Observatory, Hawall interval Rate of increase per year 1959-1969 0.9 1969-1979 1979-1989 1989-1999 1999-2009 Figure A1.6.2 1999-2009 *- mrame -11- -n4 P2 جية 1989-1999 1979-1989 1969-1979 1959-1969 This bar drawn for you as an example 1.0 CO, Average Increase/Year (ppmv) B) E BAR GRAPH We will use a different type of graph to derive…arrow_forwardUse the relationships you just described to compute the values needed to fill in the blanks in the table in Fig A1.4.1 depth (a) 1.0 cml 0.7 cml cm| base dimensions (b, c)| 1.0 cm| 1.0 cm| 1.0 cm 1.0 cm| 1.0 cm| 1.0 cm volume (V) 1.0_cm' cm'| cm'| density (p) 1.0 g/cm'| 1.0 g/cm 1.0 g/cm' mass (m)| 0.3 g Column 1: depth at 1.0 cm volume mass Column 2: depth at 0.7 cm volume mass Column 3: unknown depth depth volumearrow_forward
- San Andreas Transform Boundary Plate Motion The geologic map below of southern California shows the position of the famous San Andreas Fault, a transform plate boundary between the North American Plate (east side) and the Pacific Plate (west side). The relative motion between the plates is indicated by the half arrows along the transform plate boundary (i.e., the Pacific Plate is moving to the northwest relative to the North American Plate). Note the two bodies of Oligocene volcanic rocks (labeled Ov) on the map in the previous page located along either side of the San Andreas Fault. These rocks are about 23.5 million years old and were once one body of rock. They have been separated by displacement along the fault. 21. Based on the offset of these volcanic rocks, what is the average annual rate of relative plate motion in cm/yr? SAF lab 2.jpg Group of answer choices 0.67 cm/yr 2 cm/yr 6.7 cm/yr 1.5 cm/yr CALIFORNIA Berkeley San Francisco K Os Q San Andreas Fault Ov…arrow_forwardThese are NOT part of any graded assignment. Are there other examples of synapomorphy. What is it called when the traits retained are similar to ancestors?arrow_forwardPlease hand draw everying. Thank you! Draw a gram positive bacterial cell below. Your cell should have the following parts, labeled: A coccus shape A capsule The gram positive cell wall should have the peptidoglycan labeled, as well as its component parts (NAM, NAG, and teichoic acid) A cell membrane Fimbriae A nucleoid Ribosomes Inclusionsarrow_forward
- Draw a gram negative bacterial cell below. Your cell should have the following parts, labeled: A bacillus shape Fimbriae Amphitrichous flagella 2 membranes (outer and inner) The outer membrane should have lipopolysaccharide (LPS) with lipid A and O antigens Periplasmic space The thin peptidoglycan cell wall between the 2 membranes A nucleoid Ribosomes Inclusionsarrow_forwardBacterial species Cell wall type Example: S. mitis Gram positive S. epidermidis H. pylori M. bovis S. marcescens Shape and arrangement Coccus, streptococcus Drawing 0000000arrow_forwardDraw a gram positive bacterial cell below. Your cell should have the following parts, labeled: A coccus shape A capsule The gram positive cell wall should have the peptidoglycan labeled, as well as its component parts (NAM, NAG, and teichoic acid) A cell membrane Fimbriae A nucleoid Ribosomes Inclusionsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning
- Biology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning
Biology: The Dynamic Science (MindTap Course List)
Biology
ISBN:9781305389892
Author:Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher:Cengage Learning
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Concepts of Biology
Biology
ISBN:9781938168116
Author:Samantha Fowler, Rebecca Roush, James Wise
Publisher:OpenStax College
Bacterial Endospore Formation -Biology Pundit; Author: Biology Pundit;https://www.youtube.com/watch?v=6_sinRhE8zA;License: Standard YouTube License, CC-BY