Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
2nd Edition
ISBN: 9781305079243
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 15, Problem 28E

(a)

Interpretation Introduction

Interpretation: The solubility product of PbI2,CdCO3, and Sr3(PO4)2 is given. By using these values, the solubility (in mol/L ) of PbI2,CdCO3, and Sr3(PO4)2 is to be calculated.

Concept introduction: Solubility is defined as the maximum amount of solute that can dissolve at a certain amount of solvent at certain temperature. The solubility product, Ksp is the equilibrium constant that is applied when salt partially dissolve in a solvent. The solubility product of dissociation of AxBy is calculated as,

Ksp=[A]x[B]y

Where,

  • x is coefficient of concentration of A .
  • y is coefficient of concentration of B .

(a)

Expert Solution
Check Mark

Answer to Problem 28E

The solubility of PbI2 is 1.5×103mol/L_ .

Explanation of Solution

Explanation

To determine: The solubility of PbI2 (in mol/L ) from the given Ksp value.

The solubility of PbI2 is 1.5×103mol/L_ .

Given

Solubility product of PbI2 is 1.4×108 .

Since, solid PbI2 is placed in contact with water. Therefore, compound present before the reaction is PbI2 and H2O . The dissociation reaction of PbI2 is,

PbI2(s)Pb2+(aq)+2I(aq)

Since, PbI2 does not dissolved initially, hence,

[Pb2+]initial=[I]initial=0

The solubility of PbI2 can be calculated from the concentration of ions at equilibrium.

It is assumed that smol/L of solid is dissolved to reach the equilibrium. The meaning of 1:2 stoichiometry of salt is,

smol/LPbI2smol/LPb2++2smol/LI

Make the ICE table for the dissociation reaction of PbI2 .

PbI2(s)Pb2+(aq)+     2I(aq)Initial(M):00Chang(M):s2sEquilibrium(M):s2s

Formula

The solubility product of PbI2 is calculated as,

Ksp=[Pb2+][I]2=(s)(2s)2

Where,

  • Ksp is solubility product.
  • [Pb2+] is concentration of Pb2+ .
  • [I] is concentration of I .
  • s is the solubility.

Substitute the values of Ksp in the above expression.

Ksp=(s)(2s)21.4×108=4s3s=1.5×103mol/L_

(b)

Interpretation Introduction

Interpretation: The solubility product of PbI2,CdCO3, and Sr3(PO4)2 is given. By using these values, the solubility (in mol/L ) of PbI2,CdCO3, and Sr3(PO4)2 is to be calculated.

Concept introduction: Solubility is defined as the maximum amount of solute that can dissolve at a certain amount of solvent at certain temperature. The solubility product, Ksp is the equilibrium constant that is applied when salt partially dissolve in a solvent. The solubility product of dissociation of AxBy is calculated as,

Ksp=[A]x[B]y

Where,

  • x is coefficient of concentration of A .
  • y is coefficient of concentration of B .

(b)

Expert Solution
Check Mark

Answer to Problem 28E

The solubility of CdCO3 is 2.3×106mol/L_ .

Explanation of Solution

Explanation

To determine: The solubility of CdCO3 (in mol/L ) from the given Ksp value.

The solubility of CdCO3 is 2.3×106mol/L_ .

Given

Solubility product of CdCO3 is 5.2×1012 .

Since, solid CdCO3 is placed in contact with water. Therefore, compound present before the reaction is CdCO3 and H2O . The dissociation reaction of CdCO3 is,

CdCO3(s)Cd2+(aq)+CO32(aq)

Since, CdCO3 does not dissolved initially, hence,

[Cd2+]initial=[CO32]initial=0

The solubility of CdCO3 can be calculated from the concentration of ions at equilibrium.

It is assumed that smol/L of solid is dissolved to reach the equilibrium. The meaning of 1:1 stoichiometry of salt is,

smol/LCdCO3smol/LCd2++smol/LCO32

Make the ICE table for the dissociation reaction of CdCO3 .

CdCO3(s)Cd2+(aq)+    CO32(aq)Initial(M):00Chang(M):ssEquilibrium(M):ss

Formula

The solubility product of CdCO3 is calculated as,

Ksp=[Cd2+][CO32]=(s)(s)

Where,

  • Ksp is solubility product.
  • [Cd2+] is concentration of Cd2+ .
  • [CO32] is concentration of CO32 .
  • s is the solubility.

Substitute the values of Ksp in the above expression.

Ksp=(s)(s)5.2×1012=s2s=2.3×106mol/L_

(c)

Interpretation Introduction

Interpretation: The solubility product of PbI2,CdCO3, and Sr3(PO4)2 is given. By using these values, the solubility (in mol/L ) of PbI2,CdCO3, and Sr3(PO4)2 is to be calculated.

Concept introduction: Solubility is defined as the maximum amount of solute that can dissolve at a certain amount of solvent at certain temperature. The solubility product, Ksp is the equilibrium constant that is applied when salt partially dissolve in a solvent. The solubility product of dissociation of AxBy is calculated as,

Ksp=[A]x[B]y

Where,

  • x is coefficient of concentration of A .
  • y is coefficient of concentration of B .

(c)

Expert Solution
Check Mark

Answer to Problem 28E

(c) The solubility of Sr3(PO4)2 is 6.5×107mol/L_ .

Explanation of Solution

To determine: The solubility of Sr3(PO4)2 (in mol/L ) from the given Ksp value.

The solubility of Sr3(PO4)2 is 2.5×107mol/L_ .

Given:

Solubility product of Sr3(PO4)2 is 1.0×1031 .

Since, solid Sr3(PO4)2 is placed in contact with water. Therefore, compound present before the reaction is Sr3(PO4)2 and H2O . The dissociation reaction of Sr3(PO4)2 is,

Sr3(PO4)2(s)3Sr2+(aq)+2PO43(aq)

Since, Sr3(PO4)2 does not dissolved initially, hence,

[Sr2+]initial=[PO43]initial=0

The solubility of Sr3(PO4)2 can be calculated from the concentration of ions at equilibrium.

It is assumed that smol/L of solid is dissolved to reach the equilibrium. The meaning of 3:2 stoichiometry of salt is,

smol/LSr3(PO4)23smol/LSr2++2smol/LPO43

Make the ICE table for the dissociation reaction of Sr3(PO4)2 .

Sr3(PO4)2(s)3Sr2+(aq)+     2PO43(aq)Initial(M):00Chang(M):3s2sEquilibrium(M):3s2s

Formula:

The solubility product of Sr3(PO4)2 is calculated as,

Ksp=[Sr2+]3[PO43]2=(3s)3(2s)2

Where,

  • Ksp is solubility product.
  • [Sr2+] is concentration of Sr2+ .
  • [PO43] is concentration of PO43 .
  • s is the solubility.

Substitute the values of Ksp in the above expression.

Ksp=(3s)3(2s)21.0×1031=108s5s=2.5×107mol/L_

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Don't used Ai solution
The standard Gibbs energies of formation of CaO(s), CaCO3 (calcite), and CO2 (g) are -604.04, -1128.80, and -394.37 kJ/mol, respectively. Find the value of AG, and Keq for the following reaction: CaCO3 CaO (s) + CO2 (g) [ap A dry mixture containing 1 g of each solid [CaCO3(s) and CaO(s)] is on the lab bench in contact with the atmosphere, which contains a partial pressure of 10-35 bar CO2 (g). What is the total Gibbs free energy of the system containing all three species before any reaction has happened? Does the equilibrium driving force favor conversion of one of the solids into the other, or are the solids equilibrated with one another?
Classification of boranes.

Chapter 15 Solutions

Chemistry: An Atoms First Approach

Ch. 15 - Prob. 1ALQCh. 15 - Prob. 2ALQCh. 15 - Prob. 3ALQCh. 15 - A friend tells you: The constant Ksp of a salt is...Ch. 15 - Prob. 5ALQCh. 15 - Prob. 6ALQCh. 15 - Prob. 7ALQCh. 15 - For which of the following is the Ksp value of the...Ch. 15 - Ag2S(s) has a larger molar solubility than CuS...Ch. 15 - Prob. 10QCh. 15 - Prob. 11QCh. 15 - When Na3PO4(aq) is added to a solution containing...Ch. 15 - The common ion effect for ionic solids (salts) is...Ch. 15 - Prob. 14QCh. 15 - Prob. 15QCh. 15 - The stepwise formation constants for a complex ion...Ch. 15 - Prob. 17QCh. 15 - Prob. 18QCh. 15 - Write balanced equations for the dissolution...Ch. 15 - Write balanced equations for the dissolution...Ch. 15 - Prob. 21ECh. 15 - Use the following data to calculate the Ksp value...Ch. 15 - Approximately 0.14 g nickel(II) hydroxide,...Ch. 15 - The solubility of the ionic compound M2X3, having...Ch. 15 - Prob. 25ECh. 15 - Prob. 26ECh. 15 - Calculate the solubility of each of the following...Ch. 15 - Prob. 28ECh. 15 - Cream of tartar, a common ingredient in cooking,...Ch. 15 - Prob. 30ECh. 15 - Prob. 31ECh. 15 - Calculate the molar solubility of Cd(OH)2, Ksp =...Ch. 15 - Calculate the molar solubility of Al(OH)3, Ksp = 2...Ch. 15 - Calculate the molar solubility of Co(OH)3, Ksp =...Ch. 15 - Prob. 35ECh. 15 - For each of the following pairs of solids,...Ch. 15 - Calculate the solubility (in moles per liter) of...Ch. 15 - Calculate the solubility of Co(OH)2(s) (Ksp = 2.5 ...Ch. 15 - The Ksp for silver sulfate (Ag2SO4) is 1.2 105....Ch. 15 - Prob. 40ECh. 15 - Prob. 41ECh. 15 - Prob. 42ECh. 15 - Prob. 43ECh. 15 - The solubility of Pb(IO3)(s) in a 0.10-M KIO3...Ch. 15 - Prob. 45ECh. 15 - For which salt in each of the following groups...Ch. 15 - What mass of ZnS (Ksp = 2.5 1022) will dissolve...Ch. 15 - The concentration of Mg2+ in seawater is 0.052 M....Ch. 15 - Will a precipitate form when 100.0 mL of 4.0 104...Ch. 15 - A solution contains 1.0 105 M Ag+ and 2.0 106 M...Ch. 15 - A solution is prepared by mixing 100.0 mL of 1.0 ...Ch. 15 - Prob. 52ECh. 15 - Calculate the final concentrations of K+(aq),...Ch. 15 - Prob. 54ECh. 15 - A 50.0-mL sample of 0.00200 M AgNO3 is added to...Ch. 15 - Prob. 56ECh. 15 - A solution contains 1.0 105 M Na3PO4. What is the...Ch. 15 - The Ksp of Al(OH)3 is 2 1032. At what pH will a...Ch. 15 - A solution is 1 104 M in NaF, Na2S, and Na3PO4....Ch. 15 - A solution contains 0.25 M Ni(NO3)2 and 0.25 M...Ch. 15 - Write equations for the stepwise formation of each...Ch. 15 - Write equations for the stepwise formation of each...Ch. 15 - In the presence of CN, Fe3+ forms the complex ion...Ch. 15 - In the presence of NH3, Cu2+ forms the complex ion...Ch. 15 - Prob. 65ECh. 15 - Prob. 66ECh. 15 - The overall formation constant for HgI42 is 1.0 ...Ch. 15 - Prob. 68ECh. 15 - A solution is formed by mixing 50.0 mL of 10.0 M...Ch. 15 - A solution is prepared by mixing 100.0 mL of 1.0 ...Ch. 15 - a. Calculate the molar solubility of AgI in pure...Ch. 15 - Solutions of sodium thiosulfate are used to...Ch. 15 - Kf for the complex ion Ag(NH3)2+ is 1.7 107. Ksp...Ch. 15 - Prob. 74ECh. 15 - Prob. 75ECh. 15 - The solubility of copper(II) hydroxide in water...Ch. 15 - A solution contains 0.018 mole each of I, Br, and...Ch. 15 - Prob. 78AECh. 15 - Tooth enamel is composed of the mineral...Ch. 15 - Prob. 80AECh. 15 - What mass of Ca(NO3)2 must be added to 1.0 L of a...Ch. 15 - Calculate the mass of manganese hydroxide present...Ch. 15 - Prob. 83AECh. 15 - The active ingredient of Pepto-Bismol is the...Ch. 15 - Prob. 85AECh. 15 - The equilibrium constant for the following...Ch. 15 - Calculate the concentration of Pb2+ in each of the...Ch. 15 - Will a precipitate of Cd(OH)2 form if 1.0 mL of...Ch. 15 - Prob. 89AECh. 15 - Describe how you could separate the ions in each...Ch. 15 - Prob. 91AECh. 15 - Prob. 92AECh. 15 - Prob. 93CWPCh. 15 - Prob. 94CWPCh. 15 - Prob. 95CWPCh. 15 - The solubility of Pb(IO3)2(s) in a 7.2 102-M KIO3...Ch. 15 - A 50.0-mL sample of 0.0413 M AgNO3(aq) is added to...Ch. 15 - Prob. 98CWPCh. 15 - Prob. 99CPCh. 15 - Consider a solution made by mixing 500.0 mL of 4.0...Ch. 15 - a. Calculate the molar solubility of AgBr in pure...Ch. 15 - Prob. 102CPCh. 15 - Prob. 103CPCh. 15 - Calcium oxalate (CaC2O4) is relatively insoluble...Ch. 15 - What is the maximum possible concentration of Ni2+...Ch. 15 - A mixture contains 1.0 103 M Cu2+ and 1.0 103 M...Ch. 15 - Sodium tripolyphosphate (Na5P3O10) is used in many...Ch. 15 - You add an excess of solid MX in 250g water. You...Ch. 15 - a. Calculate the molar solubility of SrF2 in...Ch. 15 - Prob. 110IPCh. 15 - Prob. 111IPCh. 15 - Prob. 112IPCh. 15 - Aluminum ions react with the hydroxide ion to form...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry for Engineering Students
    Chemistry
    ISBN:9781337398909
    Author:Lawrence S. Brown, Tom Holme
    Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY