Chemistry: An Atoms First Approach
2nd Edition
ISBN: 9781305079243
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 58E
The Ksp of Al(OH)3 is 2 × 10−32. At what pH will a 0.2-M Al3+ solution begin to show precipitation of Al(OH)3?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Considering that ferrous hydroxide (Fe(OH)2) has a Kps of 6,3 x 10^-18, what is the pH at which precipitation of a 0,01 mol L-1 solution of Fe2+ starts?
6,9
7,7
6,6
6,1
6,4
12. The following quantities of salts were added to a volume of water to make
1 liter of solution:
1 x 10-2 moles NaCl
2 x 10-2 moles CaCl,
2 x 10-2 moles BaCl,
(a) What is the ionic strength of the solution?
(b) A small amount of phosphate salt is added to the same solution with
negligible change in ionic strength. Given K = 10-7.2 for the reaction
H,PO, = H+ + HPO,?-
Calculate (H*][HPO,2-1/[H,PO,"), called °K, using the Güntelberg ap-
proximation of the DeBye-Hückel law.
(c) Calculate the "salting-out" coefficient, k,, for a nonelectrolyte in the same
solution if its activity is 10-3 M and its concentration is 9.5 x 10 4 M.
The pH of a saturated solution of nickel(II) hydroxide,
Ni(OH)2, was found to be 9.20. From this, find Kp for
nickel(II) hydroxide.
Km =[
Chapter 15 Solutions
Chemistry: An Atoms First Approach
Ch. 15 - To what reaction does the solubility product...Ch. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Prob. 4RQCh. 15 - Prob. 5RQCh. 15 - Prob. 6RQCh. 15 - Prob. 7RQCh. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - Prob. 10RQ
Ch. 15 - Prob. 1ALQCh. 15 - Prob. 2ALQCh. 15 - Prob. 3ALQCh. 15 - A friend tells you: The constant Ksp of a salt is...Ch. 15 - Prob. 5ALQCh. 15 - Prob. 6ALQCh. 15 - Prob. 7ALQCh. 15 - For which of the following is the Ksp value of the...Ch. 15 - Ag2S(s) has a larger molar solubility than CuS...Ch. 15 - Prob. 10QCh. 15 - Prob. 11QCh. 15 - When Na3PO4(aq) is added to a solution containing...Ch. 15 - The common ion effect for ionic solids (salts) is...Ch. 15 - Prob. 14QCh. 15 - Prob. 15QCh. 15 - The stepwise formation constants for a complex ion...Ch. 15 - Prob. 17QCh. 15 - Prob. 18QCh. 15 - Write balanced equations for the dissolution...Ch. 15 - Write balanced equations for the dissolution...Ch. 15 - Prob. 21ECh. 15 - Use the following data to calculate the Ksp value...Ch. 15 - Approximately 0.14 g nickel(II) hydroxide,...Ch. 15 - The solubility of the ionic compound M2X3, having...Ch. 15 - Prob. 25ECh. 15 - Prob. 26ECh. 15 - Calculate the solubility of each of the following...Ch. 15 - Prob. 28ECh. 15 - Cream of tartar, a common ingredient in cooking,...Ch. 15 - Prob. 30ECh. 15 - Prob. 31ECh. 15 - Calculate the molar solubility of Cd(OH)2, Ksp =...Ch. 15 - Calculate the molar solubility of Al(OH)3, Ksp = 2...Ch. 15 - Calculate the molar solubility of Co(OH)3, Ksp =...Ch. 15 - Prob. 35ECh. 15 - For each of the following pairs of solids,...Ch. 15 - Calculate the solubility (in moles per liter) of...Ch. 15 - Calculate the solubility of Co(OH)2(s) (Ksp = 2.5 ...Ch. 15 - The Ksp for silver sulfate (Ag2SO4) is 1.2 105....Ch. 15 - Prob. 40ECh. 15 - Prob. 41ECh. 15 - Prob. 42ECh. 15 - Prob. 43ECh. 15 - The solubility of Pb(IO3)(s) in a 0.10-M KIO3...Ch. 15 - Prob. 45ECh. 15 - For which salt in each of the following groups...Ch. 15 - What mass of ZnS (Ksp = 2.5 1022) will dissolve...Ch. 15 - The concentration of Mg2+ in seawater is 0.052 M....Ch. 15 - Will a precipitate form when 100.0 mL of 4.0 104...Ch. 15 - A solution contains 1.0 105 M Ag+ and 2.0 106 M...Ch. 15 - A solution is prepared by mixing 100.0 mL of 1.0 ...Ch. 15 - Prob. 52ECh. 15 - Calculate the final concentrations of K+(aq),...Ch. 15 - Prob. 54ECh. 15 - A 50.0-mL sample of 0.00200 M AgNO3 is added to...Ch. 15 - Prob. 56ECh. 15 - A solution contains 1.0 105 M Na3PO4. What is the...Ch. 15 - The Ksp of Al(OH)3 is 2 1032. At what pH will a...Ch. 15 - A solution is 1 104 M in NaF, Na2S, and Na3PO4....Ch. 15 - A solution contains 0.25 M Ni(NO3)2 and 0.25 M...Ch. 15 - Write equations for the stepwise formation of each...Ch. 15 - Write equations for the stepwise formation of each...Ch. 15 - In the presence of CN, Fe3+ forms the complex ion...Ch. 15 - In the presence of NH3, Cu2+ forms the complex ion...Ch. 15 - Prob. 65ECh. 15 - Prob. 66ECh. 15 - The overall formation constant for HgI42 is 1.0 ...Ch. 15 - Prob. 68ECh. 15 - A solution is formed by mixing 50.0 mL of 10.0 M...Ch. 15 - A solution is prepared by mixing 100.0 mL of 1.0 ...Ch. 15 - a. Calculate the molar solubility of AgI in pure...Ch. 15 - Solutions of sodium thiosulfate are used to...Ch. 15 - Kf for the complex ion Ag(NH3)2+ is 1.7 107. Ksp...Ch. 15 - Prob. 74ECh. 15 - Prob. 75ECh. 15 - The solubility of copper(II) hydroxide in water...Ch. 15 - A solution contains 0.018 mole each of I, Br, and...Ch. 15 - Prob. 78AECh. 15 - Tooth enamel is composed of the mineral...Ch. 15 - Prob. 80AECh. 15 - What mass of Ca(NO3)2 must be added to 1.0 L of a...Ch. 15 - Calculate the mass of manganese hydroxide present...Ch. 15 - Prob. 83AECh. 15 - The active ingredient of Pepto-Bismol is the...Ch. 15 - Prob. 85AECh. 15 - The equilibrium constant for the following...Ch. 15 - Calculate the concentration of Pb2+ in each of the...Ch. 15 - Will a precipitate of Cd(OH)2 form if 1.0 mL of...Ch. 15 - Prob. 89AECh. 15 - Describe how you could separate the ions in each...Ch. 15 - Prob. 91AECh. 15 - Prob. 92AECh. 15 - Prob. 93CWPCh. 15 - Prob. 94CWPCh. 15 - Prob. 95CWPCh. 15 - The solubility of Pb(IO3)2(s) in a 7.2 102-M KIO3...Ch. 15 - A 50.0-mL sample of 0.0413 M AgNO3(aq) is added to...Ch. 15 - Prob. 98CWPCh. 15 - Prob. 99CPCh. 15 - Consider a solution made by mixing 500.0 mL of 4.0...Ch. 15 - a. Calculate the molar solubility of AgBr in pure...Ch. 15 - Prob. 102CPCh. 15 - Prob. 103CPCh. 15 - Calcium oxalate (CaC2O4) is relatively insoluble...Ch. 15 - What is the maximum possible concentration of Ni2+...Ch. 15 - A mixture contains 1.0 103 M Cu2+ and 1.0 103 M...Ch. 15 - Sodium tripolyphosphate (Na5P3O10) is used in many...Ch. 15 - You add an excess of solid MX in 250g water. You...Ch. 15 - a. Calculate the molar solubility of SrF2 in...Ch. 15 - Prob. 110IPCh. 15 - Prob. 111IPCh. 15 - Prob. 112IPCh. 15 - Aluminum ions react with the hydroxide ion to form...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Practice Problem 1.22 Which of the following alkenes can exist as cis-trans isomers? Write their structures. Bu...
Organic Chemistry
How could you separate a mixture of the following compounds? The reagents available to you are water, either, 1...
Organic Chemistry
The chapter sections to review are shown in parentheses at the end of each problem. A "chemical-free” shampoo i...
Basic Chemistry
Determine the de Brogue wavelength of a. an electron moving at 1/10 the speed of light. b. a 400 g Frisbee movi...
Inorganic Chemistry
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider the reaction BaF2(s)+SO42(aq)BaSO4(s)+2 F(aq) (a) Calculate K for the reaction. (b) Will BaSO4 precipitate if Na2SO4 is added to a saturated solution of BaF2?arrow_forwardThe solubility product of aluminum hydroxide (Al(OH)3) is 1.9x10–33. Derive an equation for the concentration of Al3+ in water as a function of pH if the water is saturated with Al(OH)3. If the concentration of Al3+ in water cannot exceed 10 micromolar (because all the aluminum has dissolved), at what pH would you expect the product of the Al3+ concentration and the PO43− concentration to be a maximum? Explain your reasoning.arrow_forwardCalculate the pH of a 1.00 L solution of 0.100 M NH 3(aq) after the addition of 0.010 mol NH 4Cl(s). For NH 3, pK b = 4.74.arrow_forward
- The solubility of CuCO3 in water at 25 °C is measured to be 0.0019 Round your answer to 2 significant digits. x10 X Ś L Use this information to calculate K sp for CuCO 3.arrow_forwardA solution of 0.10 M silver nitrate, AgNO3, is added to a solution of 0.10 M lithium hydroxide, LiOH. The Ksp of silver hydroxide is 2.0 x 10-8. What happens to the pH as the silver nitrate is added, AgNO3?arrow_forwardCalculate the pH of a 0.300 M NH4Cl solution. Kp for NH3 is 1.8 x 10-5.arrow_forward
- Determine the pH and pOH of 0.25 L of a solution that is 0.0201 M boric acid and 0.0366 M sodium borate; pk for B(OH)3 = 9.0 at 25°C.arrow_forwardThe equilibrium constant for the reaction Hg2+(aq) + 2Cl−(aq) ⇌ HgCl2(aq) is 1.6 × 1013. Is HgCl2 a strong electrolyte or a weak electrolyte? What are the concentrations of Hg2+ and Cl– in a 0.015-M solution of HgCl2?arrow_forwardDetermine the molar solubility for Mg(OH)₂ (Ksp = 1.0 × 10⁻³¹) in an aqueous solution that has a pH of 8.90 at 25 °C.arrow_forward
- Calculate the pH of a solution of magnesium hydroxide, Mg(OH)2 (Ksp = 5.6 × 10−12), made by dissolving solid Mg(OH)2 in pure water until the solution is saturated.arrow_forwardLithium hypoiodite (LiOl) is the lithium salt of the conjugate base of hypoiodous acid. The Ka for hypoiodous acid is 2.3x10-11.arrow_forwardAt 25 °C, only 0.0110 mol of the generic salt AB2 is soluble in 1.00 L of water. What is the Ksp of the salt at 25 °C? AB, (s) = A2+(aq) + 2B¯(aq)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY