Concept explainers
A solution contains 0.018 mole each of I−, Br−, and Cl−. When the solution is mixed with 200. mL of 0.24 M AgNO3, what mass of AgCl(s) precipitates out, and what is [Ag+]? Assume no volume change.
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Chemistry: An Atoms First Approach
- A solution is made up by adding 0.632 g of barium nitrate and 0.920 g of lanthanum nitrate, to La(NO3)3 enough water to make 0.500 L of solution. Solid sodium iodate, NalO3, is added (without volume change) to the solution. (a) Which salt will precipitate first? La(IO3)3 (Ksp=7.501012) or BAIO3 (Ksp=4.0109)? (b) What is [IO3-] when the salt in (a) first begins to precipitate?arrow_forwardThe solubility of Mg(OH)2 in water is approximately 9.6 mg/L at a given temperature. Calculate the Ksp of magnesium hydroxide. Calculate the hydroxide concentration needed to precipitate Mg2+ ions such that no more than 5.0 μg Mg2+ per liter remains in the solution.arrow_forwardA solution is made up by adding 0.839 g of silver(I) nitrate and 1.024 g of lead(II) nitrate to enough water to make 492 mL of solution. Solid sodium chromate, Na2CrO4, is added without changing the volume of the solution. (a) Which salt will precipitate first, Ag2CrO4 or PbCrO4? (b) What is the concentration of the chromate ion when the first salt starts to precipitate?arrow_forward
- Write the Ksp expression for each of these slightly soluble salts: CuBr HgI2 SrSO4arrow_forwardThe Ksp for Q, a slightly soluble ionic compound composed of M22+ and X ions, is 4.5 1029. The electron configuration of M+ is [Xe]6s14f145d10. The X anion has 54 electrons. What is the molar solubility of Q in a solution of NaX prepared by dissolving 1.98 g NaX in 150. mL solution?arrow_forwardA saturated solution of copper(II) iodate in pure water has a copper-ion concentration of 2.7 103 M. a What is the molar solubility of copper iodate in a 0.35 M potassium iodate solution? b What is the molar solubility of copper iodate in a 0.35 M copper nitrate solution? c Should there be a difference in the answers to parts a and b? Why?arrow_forward
- An analytical chemist has a solution containing chloride ion, Cl. She decides to determine the amount of chloride ion in the solution by titrating 50.0 mL of this solution by 0.100 M AgNO3. As a way to indicate the endpoint of the titration, she added 1.00 g of potassium chromate, K2CrO4 (see Figure 17.5). As she slowly added the silver nitrate to the solution, a white precipitate formed. She continued the titration, with more white precipitate forming. Finally, the solution turned red, from another precipitate. The volume of the solution at this point was 60.3 mL. How many moles of chloride ion were there in the original solution? How many moles of chloride ion were there in the final solution? You may make any reasonable approximations.arrow_forwardThe Ksp value for radium sulfate, RaSO4, is 4.2 1011. If 25 mg of radium sulfate is placed in 1.00 102 mL of water, does all of it dissolve? If not, how much dissolves?arrow_forwarda If the molar solubility of beryllium(II) hydroxide is 8.6 107 M in pure water, what is its Ksp value? b What is the molar solubility of beryllium(II) hydroxide in a solution that is 1.50 M in NH3 and 0.25 M in NH4Cl? c Account for the differences in molar solubility in parts a and b.arrow_forward
- 12.109 Copper(II) iodate has a solubility of 0.136 g per 100 g of water. Calculate its molar solubility in water and its Ksp.arrow_forwardTo what reaction does the solubility product constant, Ksp, refer? Table 15-1 lists Ksp values for several ionic solids. For any of these ionic compounds, you should be able to calculate the solubility. What is the solubility of a salt, and what procedures do you follow to calculate the solubility of a salt? How would you calculate the Ksp value for a salt given the solubility?arrow_forwardA solution contains 0.0150 M lead(II) ion. A concentrated sodium iodide solution is added dropwise to precipitate lead iodide (assume no volume change). a At what concentration of I does precipitate start to form? b When [I] = 2.0 103 M, what is the lead-ion concentration? What percentage of the lead(II) originally present remains in solution?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning