Microelectronics: Circuit Analysis and Design
4th Edition
ISBN: 9780073380643
Author: Donald A. Neamen
Publisher: McGraw-Hill Companies, The
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 15.8P
To determine
The required order of the given Butterworth filter for the given characteristics
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Discuss the disadvantages of increasing the order of the filter.
(a) Explain the function of a high pass filter. Draw a diagram of a simple high–pass filter using a capacitor and a resistor.
[Q1](A) The gain of a second order band-pass active filter at its upper cutoff frequency is 42
dB. The lower cutoff frequency is 10.8 KHz and Q-factor is 50. Assume that the center
frequency fo, which is equal to 15.3 KHz, is midway between the cutoff frequencies.
Determine
1- The gain at center frequency.
2- The upper cutoff frequency.
3- The bandwidth.
Chapter 15 Solutions
Microelectronics: Circuit Analysis and Design
Ch. 15 - Design a twopole lowpass Butterworth filter with a...Ch. 15 - Consider the switchedcapacitor circuit in Figure...Ch. 15 - Prob. 15.3EPCh. 15 - (a) Design a threepole highpass Butterworth active...Ch. 15 - Prob. 15.2TYUCh. 15 - Prob. 15.3TYUCh. 15 - Simulate a 25M resistance using the circuit in...Ch. 15 - Design the phaseshift oscillator shown in Figure...Ch. 15 - Design the Wienbridge circuit in Figure 15.17 to...Ch. 15 - Prob. 15.5TYU
Ch. 15 - Prob. 15.6TYUCh. 15 - Prob. 15.6EPCh. 15 - Redesign the street light control circuit shown in...Ch. 15 - A noninverting Schmitt trigger is shown m Figure...Ch. 15 - For the Schmitt trigger in Figure 15.30(a), the...Ch. 15 - Prob. 15.9TYUCh. 15 - Prob. 15.8EPCh. 15 - Prob. 15.9EPCh. 15 - Consider the 555 IC monostablemultivibrator. (a)...Ch. 15 - The 555 IC is connected as an...Ch. 15 - Prob. 15.10TYUCh. 15 - Prob. 15.11TYUCh. 15 - Prob. 15.12TYUCh. 15 - Prob. 15.12EPCh. 15 - Prob. 15.13EPCh. 15 - (a) Consider the bridge amplifier in Figure 15.46...Ch. 15 - Prob. 15.14EPCh. 15 - Prob. 15.15EPCh. 15 - Prob. 15.16EPCh. 15 - Prob. 1RQCh. 15 - Prob. 2RQCh. 15 - Consider a lowpass filter. What is the slope of...Ch. 15 - Prob. 4RQCh. 15 - Describe how a capacitor in conjunction with two...Ch. 15 - Sketch a onepole lowpass switchedcapacitor filter...Ch. 15 - Explain the two basic principles that must be...Ch. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - Prob. 10RQCh. 15 - Prob. 11RQCh. 15 - What is the primary advantage of a Schmitt trigger...Ch. 15 - Sketch the circuit and explain the operation of a...Ch. 15 - Prob. 14RQCh. 15 - Prob. 15RQCh. 15 - Prob. 16RQCh. 15 - Prob. 17RQCh. 15 - Prob. 18RQCh. 15 - Prob. D15.1PCh. 15 - Prob. 15.2PCh. 15 - The specification in a highpass Butterworth filter...Ch. 15 - (a) Design a twopole highpass Butterworth active...Ch. 15 - (a) Design a threepole lowpass Butterworth active...Ch. 15 - Prob. 15.6PCh. 15 - Prob. 15.7PCh. 15 - Prob. 15.8PCh. 15 - A lowpass filter is to be designed to pass...Ch. 15 - Prob. 15.10PCh. 15 - Prob. 15.11PCh. 15 - Prob. D15.12PCh. 15 - Prob. D15.13PCh. 15 - Prob. D15.14PCh. 15 - Prob. 15.15PCh. 15 - Prob. 15.16PCh. 15 - Prob. 15.17PCh. 15 - Prob. 15.18PCh. 15 - A simple bandpass filter can be designed by...Ch. 15 - Prob. 15.20PCh. 15 - Prob. 15.21PCh. 15 - Prob. D15.22PCh. 15 - Prob. 15.23PCh. 15 - Consider the phase shift oscillator in Figure...Ch. 15 - In the phaseshift oscillator in Figure 15.15, the...Ch. 15 - Consider the phase shift oscillator in Figure...Ch. 15 - Prob. 15.27PCh. 15 - Prob. 15.28PCh. 15 - Prob. 15.29PCh. 15 - Prob. 15.30PCh. 15 - Prob. 15.31PCh. 15 - A Wienbridge oscillator is shown in Figure P15.32....Ch. 15 - Prob. 15.33PCh. 15 - Prob. D15.34PCh. 15 - Prob. D15.35PCh. 15 - Prob. 15.36PCh. 15 - Prob. 15.37PCh. 15 - Prob. D15.38PCh. 15 - Prob. 15.39PCh. 15 - Prob. 15.40PCh. 15 - Prob. 15.41PCh. 15 - For the comparator in the circuit in Figure...Ch. 15 - Prob. 15.43PCh. 15 - Prob. 15.44PCh. 15 - Prob. 15.45PCh. 15 - Consider the Schmitt trigger in Figure P15.46....Ch. 15 - The saturated output voltages are VP for the...Ch. 15 - Consider the Schmitt trigger in Figure 15.30(a)....Ch. 15 - Prob. 15.50PCh. 15 - Prob. 15.52PCh. 15 - Prob. 15.53PCh. 15 - Prob. 15.54PCh. 15 - Prob. 15.55PCh. 15 - Prob. 15.56PCh. 15 - Prob. 15.57PCh. 15 - Prob. D15.58PCh. 15 - Prob. 15.59PCh. 15 - The saturated output voltages of the comparator in...Ch. 15 - (a) The monostablemultivibrator in Figure 15.37 is...Ch. 15 - A monostablemultivibrator is shown in Figure...Ch. 15 - Prob. D15.63PCh. 15 - Design a 555 monostablemultivibrator to provide a...Ch. 15 - Prob. 15.65PCh. 15 - Prob. 15.66PCh. 15 - Prob. 15.67PCh. 15 - Prob. 15.68PCh. 15 - An LM380 must deliver ac power to a 10 load. The...Ch. 15 - Prob. 15.70PCh. 15 - Prob. D15.71PCh. 15 - Prob. 15.72PCh. 15 - (a) Design the circuit shown in Figure P15.72 such...Ch. 15 - Prob. 15.74PCh. 15 - Prob. 15.75PCh. 15 - Prob. 15.76PCh. 15 - Prob. D15.77PCh. 15 - Prob. 15.78P
Knowledge Booster
Similar questions
- 1) a) A 1V 5 kHz signal is put into a low pass filter with a cut-off frequency of 2 kHz. What will the frequency of the output signal be? b) A 1V 15 kHz sinewave signal is put into a low pass filter with a 2 kHz cut-off frequency. The output signal will have how much amplitude approximately?arrow_forwardBandwidth of an active filter is related to A. the size of filter memory B. size of filter capacity in term of frequency C. size of filter accuracy in term of frequency D. filter capability to amplify its gainarrow_forwardAn FIR bandpass filter is to be designed to meet the following frequency response specifications:and sampling frequency (Fs) is 10 KHzPassband frequencies are: 0.339 - 0.709 (normalizedTransition width: 0.017 (normalized) Stopband deviation: 0.001Passband deviation: 0.05What is the Stopband frequency (fs2) ?arrow_forward
- Sketch the waveforms of the inductor current, the current through the filter capacitor branch, and current through the load resistance. Describe the nature of the current through the equivalent series resistance (ESR) of the capacitor. What is the effect on the shape of the current when the value of the ESR is increased? Explain how the switching frequency component is eliminated by the output filter network. The efficiency of the buck converter decreases with an increase in the load current. Justify What is the effect of increasing switching frequency on the current ripple of the converter?arrow_forward[Q1](A) The gain of a second order band-pass active filter at its upper cutoff frequency is 42 dB. The lower cutoff frequency is 10.8 KHz and Q-factor is 50. Assume that the center frequency fo, which is equal to 15.3 KHZ, is midway between the cutoff frequencies. Determine 1- The gain at center frequency. 2- The upper cutoff frequency. 3- The bandwidth. (B) Design the filter with the specifications given in part (A) with equal values using Bessel approximation technique. Choose C-0.01 nF and draw the complete circuit diagram for the designed filter.arrow_forward2. The quality factor of the active filters is a a. Function of lower corner frequency (FL) c. function of bandwidth 3. The advantage of the active filters are a. they need supply power c. low cost 4. The twin T-filter (Notch) can be used good as a. high quality band-pass filter c. high-pass filter 5. The advantage of the comparator Schmitt trigger circuit is: b. function of higher corner (FH) frequency d. none of these b. they used sets definite signal limits d. sensitivity variations b. specific band-reject filter d. wide band -reject filter b. immune to erratic triggering caused by slowly immune to erratic triggering caused by noise changing input signals a. c. producing a cleaner output signal d. all of them 6. A 8-bit R-2R DAC converter with Rf=10R =10 kN and Vref=1.5V, the LSB equals a. - 0.00586V b. -0.586 V c. - 0. 0586V d. none of these 7. A typical instrumentation amplifier has a. high CMRR b. unity gain c. low input impedance d. all of them 8. When an instrumentation…arrow_forward
- Q2: (a) Design a digital bandpass Butterworth filter with the following specifications: Center frequency of 2.5 kHz. Passband bandwidth of 200 Hz and ripple of 3 dB. Lower stop frequency of 1.5 kHz, upper stop frequency of 3.5 kHz. Stopband attenuation of 15 dB. • Sampling frequency of 8 kHz. O O Darrow_forwardWhat are the circumstances in which a Kalman filter should be employed?arrow_forwardDescribe these Filters. Its use and applications (where will we use it?), as well as the advantages of disadvantages of using one. • Low Pass Filter • High Pass Filter • Band Pass Filter • Band Reject Filter • All Pass Filter • Universal Filters.arrow_forward
- Answer just the viva questions pls!arrow_forwardThe output power of filter is 100 mW, when the signal frequency is 5 kHz. When the frequency is increased to 25 kHz, the output power falls to 50 mW. What is the dB change in power ?arrow_forwardChoose the correct statement(s) that describe the diagram below. Yol) Bandpass filter Envelope detector Limiter Differentiator Select one or more Ca. FM Discriminator with bandpass limiter El b Narrowband to wideband conversion J FM Demodulator PM Demodulator B.e. Linear PLL modelarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,