Concept explainers
(a)
Interpretation: To identify whether lysine can or cannot be synthesized in the body in amounts adequate to meet the body’s needs.
Concept introduction: Amino acids are the main building blocks of proteins. Amino acids are classified as essential and non-essential depending upon whether they can be synthesized within the body itself or not.
Essential amino acids are those amino acids which cannot be synthesized by the body via biosynthesis and thus must be taken from the outside in form of dietary protein to meet the body’s need. Those amino acids which can be synthesized by biosynthesis within the liver are termed as non-essential amino acids.
The essential amino acids are arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine.
The non-essential amino acids are alanine, asparagines, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, and tyrosine.
(b)
Interpretation: To identify whether cysteine can or cannot be synthesized in the body in amounts adequate to meet the body’s needs.
Concept introduction: Amino acids are the main building blocks of proteins. Amino acids are classified as essential and non-essential depending upon whether they can be synthesized within the body itself or not.
Essential amino acids are those amino acids which cannot be synthesized by the body via biosynthesis and thus must be taken from the outside in form of dietary protein to meet the body’s need. Those amino acids which can be synthesized by biosynthesis within the liver are termed as non-essential amino acids.
The essential amino acids are arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine.
The non-essential amino acids are alanine, asparagines, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, and tyrosine.
(c)
Interpretation: To identify whether serine can or cannot be synthesized in the body in amounts adequate to meet the body’s needs.
Concept introduction: Amino acids are the main building blocks of proteins. Amino acids are classified as essential and non-essential depending upon whether they can be synthesized within the body itself or not.
Essential amino acids are those amino acids which cannot be synthesized by the body via biosynthesis and thus must be taken from the outside in form of dietary protein to meet the body’s need. Those amino acids which can be synthesized by biosynthesis within the liver are termed as non-essential amino acids.
The essential amino acids are arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine.
The non-essential amino acids are alanine, asparagines, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, and tyrosine.
(d)
Interpretation: To identify whether tryptophan can or cannot be synthesized in the body in amounts adequate to meet the body’s needs.
Concept introduction: Amino acids are the main building blocks of proteins. Amino acids are classified as essential and non-essential depending upon whether they can be synthesized within the body itself or not.
Essential amino acids are those amino acids which cannot be synthesized by the body via biosynthesis and thus must be taken from the outside in form of dietary protein to meet the body’s need. Those amino acids which can be synthesized by biosynthesis within the liver are termed as non-essential amino acids.
The essential amino acids are arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine.
The non-essential amino acids are alanine, asparagines, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, and tyrosine.

Trending nowThis is a popular solution!

Chapter 15 Solutions
EBK ORGANIC AND BIOLOGICAL CHEMISTRY
- Q10: (a) Propose a synthesis of C from A. (b) Propose a synthesis of C from B. Br Br ...\SCH 3 A B Carrow_forward9: Complete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d).arrow_forwardComplete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d).arrow_forward
- QUESTION 3: Provide the synthetic steps that convert the starting material into the product (no mechanism required). HO OH NH CH3 multiple steps 요요 H3Carrow_forwardQ6: Predict the effect of the changes given on the rate of the reaction below. CH3OH CH3Cl + NaOCH3 → CH3OCH3 + NaCl a) Change the substrate from CH3CI to CH31: b) Change the nucleophile from NaOCH 3 to NaSCH3: c) Change the substrate from CH3CI to (CH3)2CHCI: d) Change the solvent from CH3OH to DMSO.arrow_forwardQ3: Arrange each group of compounds from fastest SN2 reaction rate to slowest SN2 reaction rate. a) CI Cl فيكم H3C-Cl A B C D Br Br b) A B C Br H3C-Br Darrow_forward
- Q2: Group these solvents into either protic solvents or aprotic solvents. Acetonitrile (CH3CN), H₂O, Acetic acid (CH3COOH), Acetone (CH3COCH3), CH3CH2OH, DMSO (CH3SOCH3), DMF (HCON(CH3)2), CH3OHarrow_forwardSuppose the rate of evaporation in a hot, dry region is 1.76 meters per year, and the seawater there has a salinity of 35 ‰. Assuming a 93% yield, how much salt (NaCl) can be harvested each year from 1 km2 of solar evaporation ponds that use this seawater as a source?arrow_forwardhelparrow_forward
- Explain why only the lone pairs on the central atom are taken into consideration when predicting molecular shapearrow_forward(ME EX1) Prblm #9/10 Can you explain in detail (step by step) I'm so confused with these problems. For turmber 13 can u turn them into lewis dot structures so I can better understand because, and then as well explain the resonance structure part. Thanks for the help.arrow_forwardProblems 19 and 20: (ME EX1) Can you please explain the following in detail? I'm having trouble understanding them. Both problems are difficult for me to explain in detail, so please include the drawings and answers.arrow_forward
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College Div





