Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.3, Problem 31P
Determine the placement R of the can from the end of the tube and the speed at which the marbles fall into the can. Neglect the size of the can.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Task 2
The package has a weight of 30 N and slides down the chute. When it reaches the curved
portion AB, it is traveling at 2.4 m / s. If the chute is smooth, determine the speed of the
package when it reaches the intermediate point C when 0 = 12° and when it reaches the
horizontal plane. Also, find the normal force on the package at C.
radius = 6 m
450
eMechanica.com
-2.4 m/s
The chute is used to divert the flow of water. The flow is 0.4 m /s and it has a cross-sectional area of 0.03 m?. Neglect the weight
of the chute and the water on it
4 m
Part A
Determine the horizontal force acting on the chute at the roller B, necessary for equilibrium.
Express your answer to three significant figures and include the appropriate units.
Part B
Determine the z component of the force acting on the chute at the pin A, necessary for equilibrium.
Express your answer to three significant figures and include the appropriate units.
Part C
Determine the y component of the force acting on the chute at the pin A, necessary for equilibrium.
Express your answer to three significant figures and include the appropriate units.
Find the mass of the lighter body m. Take the weight of the plate, the acceleration due to gravity, the mass of the heavier body and the distance of the support from the care (L,g,M,D) to be known
Chapter 14 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 14.3 - Determine the work of the force when it displaces...Ch. 14.3 - Determine the kinetic energy of the 10-kg block.Ch. 14.3 - The spring is placed between the wall and the...Ch. 14.3 - If the motor exerts a constant force of 300 N on...Ch. 14.3 - The crate is initially at rest on the ground.Ch. 14.3 - If the drag force of the parachute can be...Ch. 14.3 - When s = 0.5 m, the spring is unstretched and the...Ch. 14.3 - The 5-lb collar is pulled by a cord that passes...Ch. 14.3 - The 20-kg crate is subjected to a force having a...Ch. 14.3 - If the relation between the force and deflection...
Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - Determine the required height h of the roller...Ch. 14.3 - How far will the truck skid if it is traveling 80...Ch. 14.3 - Show that this is so, by considering the 10-kg...Ch. 14.3 - A force of F = 250 N is applied to the end at B....Ch. 14.3 - If the block has a mass of 20 kg and is suspended...Ch. 14.3 - Determine how far the block must slide before its...Ch. 14.3 - If the 6-kg collar is orginally at rest, determine...Ch. 14.3 - Select the proper value of k so that the maximum...Ch. 14.3 - Determine the speed of the brick just before it...Ch. 14.3 - Determine the speed of block A after it moves 5 ft...Ch. 14.3 - If the kinetic coefficient of friction between the...Ch. 14.3 - Determine the angle at which the box leaves the...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - Determine the maximum distance A will fall before...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - The barrier stopping force is measured versus the...Ch. 14.3 - The coefficient of kinetic friction between both...Ch. 14.3 - If the coefficient of kinetic friction between the...Ch. 14.3 - The 8-Kg block is moving with an initial speed of...Ch. 14.3 - At a given instant the 10-lb block A is moving...Ch. 14.3 - The 5-lb cylinder is falling from A with a speed...Ch. 14.3 - The propelling action is obtained by drawing the...Ch. 14.3 - By design the car cannot fall off the track,...Ch. 14.3 - If the coefficient of kinetic friction along AB is...Ch. 14.3 - Prob. 29PCh. 14.3 - If the can is prevented from moving, determine the...Ch. 14.3 - Determine the placement R of the can from the end...Ch. 14.3 - If it starts from rest when the attached spring is...Ch. 14.3 - Neglect the size of the block.Ch. 14.3 - As shown, the spring is confined by the plate P...Ch. 14.3 - Determine his speed when he reaches point B on the...Ch. 14.3 - As shown, it is confined by the plate and wall...Ch. 14.3 - If the track is to be designed so that the...Ch. 14.3 - Neglect friction.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - An elastic cord having a stiffness k = 2 lb/ft is...Ch. 14.4 - In initially, the block is at rest.Ch. 14.4 - When s = 0, the 20-kg block is moving at v = 1...Ch. 14.4 - The load weighs 100 lb and the efficiency of the...Ch. 14.4 - If the block is traveling up the inclined plane...Ch. 14.4 - determine the power input to the motor, which...Ch. 14.4 - which is increasing at a rate of aP = 6 m/s2....Ch. 14.4 - Assuming the wheels do not slip on the ground,...Ch. 14.4 - Determine the power Input for a motor necessary to...Ch. 14.4 - If mechanical friction and wind resistance are...Ch. 14.4 - manufactures a turbojet engine that is placed in a...Ch. 14.4 - If the car is brought to a stop, determine how...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - Determine the power generated. How long would a...Ch. 14.4 - Determine the maximum power that must be supplied...Ch. 14.4 - The cable is tied to the top of the oil rig, wraps...Ch. 14.4 - The motor has an efficiency of = 0.65.Ch. 14.4 - The 50-lb crate is given a speed of 10ft/s in t =...Ch. 14.4 - The engine has a running efficiency = 0.68.Ch. 14.4 - If the drag resistance on the car due to the wind...Ch. 14.4 - Hoisting is provided by the motor M and the 60-kg...Ch. 14.4 - If the rod is smooth, determine the power...Ch. 14.4 - Determine the power developed by the power...Ch. 14.4 - A force F = (40 + s2) lb, where sis in ft, acts on...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - If the escalator in Prob.14-46 is not moving,...Ch. 14.4 - Neglect drag and rolling resistance, and the loss...Ch. 14.4 - Also, the velocity of the athletes arm acting in...Ch. 14.4 - Prob. 63PCh. 14.4 - If the motor draws in the cable at a constant rate...Ch. 14.5 - If a force F = (60t2) N, where t is in seconds, is...Ch. 14.5 - Determine the potential energy of the block that...Ch. 14.5 - Determine the potential energy in the spring that...Ch. 14.5 - The 2-kg pendulum bob is released from rest when...Ch. 14.5 - The 2-kg package leaves the conveyor belt at A...Ch. 14.5 - The 2-kg collar is given a downward velocity of 4...Ch. 14.5 - Determine the speed of the collar when it strikes...Ch. 14.5 - Determine the compression of each spring when the...Ch. 14.5 - If the guide rod is smooth, determine the speed of...Ch. 14.5 - If she is swinging to a maximum height defined by ...Ch. 14.5 - If it is then released, determine the maximum...Ch. 14.5 - Determine the speed of the collar when it reaches...Ch. 14.5 - Determine its speed when its center reaches point...Ch. 14.5 - If it is released from rest when = 0, determine...Ch. 14.5 - If the car is released from rest, determine its...Ch. 14.5 - Prob. 72PCh. 14.5 - If it is released from rest at the top of the hill...Ch. 14.5 - Determine the speed of each block when B descends...Ch. 14.5 - Determine the distance B must descend in order for...Ch. 14.5 - The spring has a stiffness k =50 N/m and an...Ch. 14.5 - Neglect friction.Ch. 14.5 - If it is attached to the 3-kg smooth collar and...Ch. 14.5 - Prob. 79PCh. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - For the calculation, locate the datum at r . Also,...Ch. 14.5 - Prob. 83PCh. 14.5 - The spring has an unstretched length of 1 m.Ch. 14.5 - A 60-kg satellite travels in free flight along an...Ch. 14.5 - If friction and air resistance can be neglected,...Ch. 14.5 - If the mass of the bumpers A and B can be...Ch. 14.5 - If the collar moves over the smooth rod, determine...Ch. 14.5 - When the 6-kg box reaches point A it has a speed...Ch. 14.5 - Determine the normal force the box exerts on the...Ch. 14.5 - Determine how high the box reaches up the surface...Ch. 14.5 - Determine the cars velocity and the normal force...Ch. 14.5 - The 10-kg sphere C is released from rest when =...Ch. 14.5 - If the chain is released from rest from the...Ch. 14.5 - Each spring has a stiffness k = 40 N/m and an...Ch. 14.5 - Prob. 96PCh. 14.5 - Initially each spring has a tension of 50 NCh. 14.5 - Determine the approximate normal force it exerts...Ch. 14.5 - If a 150-lb crate is released from rest at A,...Ch. 14.5 - During the motion, the collar is acted upon by a...Ch. 14.5 - Determine the speed at which it slides off at B....Ch. 14.5 - If the block starts from rest when the attached...Ch. 14.5 - Prob. 5RPCh. 14.5 - The motor has an efficiency of = 0.76.Ch. 14.5 - If the collar is released from rest at A and...Ch. 14.5 - respectively. They are connected together by a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 8. The toy plane has the three forces shown acting on it and is constrained by the wire to travel in a horizontal circle. The wire has length Wire 55 m and the speed of the plane is 28 m/s. If the mass of the plane is 0.65 kg and 0=18° find the tension in the wire. of airplane lift 0i mgarrow_forwardhelp me answer this question please it is too hard for mearrow_forwardWhen the mass of the second stage of the rocket is x, find the equations of ⊿V1 for the first stage and ⊿V2 for the second stage.arrow_forward
- Find the force constant of the spring. Assume that the angle that the ramp makes with the horizontal is 22°. Recall that the mass of the puck is 0.180 kg and q= 9.80 m/s².arrow_forwardA bucket which has a mass of 910g when empty and contains 3 litres of water is swung round in a vertical circle at 40r/min. If the cg of the bucket plus water is 1.05m from person's shoulder, determine the force on each of the two pins securing the handle of a bucket when a bucket is at top of the circlearrow_forward3. For protection, the barrel barrier is placed in front of a bridge pier. The relationship between the force and deflection of the barrier is as given in the plot. For a car weighing 4000 lb and travelling at 50 mph as it first impacts the barrier, find the penetration of the car into the barrier. Note: One interpretation of Up = fF.dr is that work is the area under the force-deflection curve. F (lb) F=90(10)³x¹/2 -x (ft)arrow_forward
- The box has a mass of 50 kg and is at rest. When it is pulled with 1000 N it reaches speed of 5m/s. how far will the box move? Neglect friction.arrow_forwardUse 3 decimal places for partial and final answersarrow_forwardIf there is n friction in the system, the Lagrange's equation will be based only on kinetic energy and protentional energy only. Select one: O True O False III Oarrow_forward
- Water is discharged into the atmosphere from the pipe at 15 m/s. Neglect the resistance provided by the pipe at C, and the weight of the pipe and the water within it. 100 mm 300 mm 60 mm 150 mm Part A Determine the horizontal component of force that is developed at the fixed support A by the ground in order to hold the pipe in equilibrium. Express your answer to three significant figures and include the appropriate units. Enter positive value if the direction of the force is to the right and negative value if the direction of the force is to the left.arrow_forwardThe radius of a highway curve is 120m, and has an angle of 9.31 from the horizontal. The center of gravity of the car is located 0.80m above the roadway and the distance between the two front wheels is 1.2m. if the car has a total weight of 15KN, a. Determine the normal acceleration (m/s2) and the velocity (in kph) of the car before overturning? Assume that friction is great enough to prevent sliding. b. Find the maximum velocity of the car could move in the curve so that there will be no pressure between the tires and the roadway, kph. c. What is the velocity of the car to prevent sliding up if the coefficient of kinetic friction is 0.60?arrow_forwardThe truck from Part I is pulling a Cylindrical steel water tank partially filled with water, the truck is pulling the water tank in a translational motion with a force of 12 KN, and has a mass of 2100kg, the pavement has a coefficient of friction of 0.30 and the tank has a unit weight of 9 KN/m3 while the water has a specific gravity of 1.05, Determine the level of the water in the water tank. (Hence use the acceleration(a)from Part I)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Introduction To Engg Mechanics - Newton's Laws of motion - Kinetics - Kinematics; Author: EzEd Channel;https://www.youtube.com/watch?v=ksmsp9OzAsI;License: Standard YouTube License, CC-BY