Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.3, Problem 32P
If it starts from rest when the attached spring is in the unstretched position at A. determine the constant vertical force F which must be applied to the cord so that the block attains a speed vB= 2.5 m/s when it reaches B; sB = 0.15 m. Neglect the size and mass of the pulley. Hint: The work of F can be determined by finding the difference ∆l in cord lengths AC and BC and using UF = F ∆ l.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 5.27 kg collar B rests on the frictionless arm AA! The collar is held in place by the rope attached to drum D and rotates about O in a horizontal plane. The
linear velocity of the collar B is increasing according to v = 0.2 t2 where v is in m/s and tis in seconds. Find the tension in the rope and the force of the bar on
.the collar if 5 s,r= 0.558 m and 0 = 58°
A
A'
D
The slotted arm OA rotates about a fixed axis through O. At the instant under consideration, 0 = 35%, 0 = 39 deg/s, and Ö = 15 deg/s².
Determine the magnited of the force F applied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.2-
kg slider B. Neglect all friction, and let L = 0.68 m. The motion occurs in a vertical plane.
0
-L
B
m
0.6*K2 m-
K1 m/s
K1=2
К2-8
K4=2
k=50*K4 N/m
B
4- The 2 kg smooth cylinder collar has a downward speed K1 m/s when it is at s=0
m. The natural length of the spring is 0.3*K2 meters and it has a spring constant
of 50*K4 N/m. As the collar goes down with the specified initial velocity, it stops
momentarily when s = Sg.
a. Determine a datum point on the figure
b. Calculate the initial kinetic energy of the system
c. Calculate initial elastic and gravitational potential energy of the system
d. Calculate the kinetic energy when s = Sg.
e. Determine the Sg value using the conservation of energy.
f. Calculate elastic and gravitational potential energy of the system s = Sg.
Chapter 14 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 14.3 - Determine the work of the force when it displaces...Ch. 14.3 - Determine the kinetic energy of the 10-kg block.Ch. 14.3 - The spring is placed between the wall and the...Ch. 14.3 - If the motor exerts a constant force of 300 N on...Ch. 14.3 - The crate is initially at rest on the ground.Ch. 14.3 - If the drag force of the parachute can be...Ch. 14.3 - When s = 0.5 m, the spring is unstretched and the...Ch. 14.3 - The 5-lb collar is pulled by a cord that passes...Ch. 14.3 - The 20-kg crate is subjected to a force having a...Ch. 14.3 - If the relation between the force and deflection...
Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - Determine the required height h of the roller...Ch. 14.3 - How far will the truck skid if it is traveling 80...Ch. 14.3 - Show that this is so, by considering the 10-kg...Ch. 14.3 - A force of F = 250 N is applied to the end at B....Ch. 14.3 - If the block has a mass of 20 kg and is suspended...Ch. 14.3 - Determine how far the block must slide before its...Ch. 14.3 - If the 6-kg collar is orginally at rest, determine...Ch. 14.3 - Select the proper value of k so that the maximum...Ch. 14.3 - Determine the speed of the brick just before it...Ch. 14.3 - Determine the speed of block A after it moves 5 ft...Ch. 14.3 - If the kinetic coefficient of friction between the...Ch. 14.3 - Determine the angle at which the box leaves the...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - Determine the maximum distance A will fall before...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - The barrier stopping force is measured versus the...Ch. 14.3 - The coefficient of kinetic friction between both...Ch. 14.3 - If the coefficient of kinetic friction between the...Ch. 14.3 - The 8-Kg block is moving with an initial speed of...Ch. 14.3 - At a given instant the 10-lb block A is moving...Ch. 14.3 - The 5-lb cylinder is falling from A with a speed...Ch. 14.3 - The propelling action is obtained by drawing the...Ch. 14.3 - By design the car cannot fall off the track,...Ch. 14.3 - If the coefficient of kinetic friction along AB is...Ch. 14.3 - Prob. 29PCh. 14.3 - If the can is prevented from moving, determine the...Ch. 14.3 - Determine the placement R of the can from the end...Ch. 14.3 - If it starts from rest when the attached spring is...Ch. 14.3 - Neglect the size of the block.Ch. 14.3 - As shown, the spring is confined by the plate P...Ch. 14.3 - Determine his speed when he reaches point B on the...Ch. 14.3 - As shown, it is confined by the plate and wall...Ch. 14.3 - If the track is to be designed so that the...Ch. 14.3 - Neglect friction.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - An elastic cord having a stiffness k = 2 lb/ft is...Ch. 14.4 - In initially, the block is at rest.Ch. 14.4 - When s = 0, the 20-kg block is moving at v = 1...Ch. 14.4 - The load weighs 100 lb and the efficiency of the...Ch. 14.4 - If the block is traveling up the inclined plane...Ch. 14.4 - determine the power input to the motor, which...Ch. 14.4 - which is increasing at a rate of aP = 6 m/s2....Ch. 14.4 - Assuming the wheels do not slip on the ground,...Ch. 14.4 - Determine the power Input for a motor necessary to...Ch. 14.4 - If mechanical friction and wind resistance are...Ch. 14.4 - manufactures a turbojet engine that is placed in a...Ch. 14.4 - If the car is brought to a stop, determine how...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - Determine the power generated. How long would a...Ch. 14.4 - Determine the maximum power that must be supplied...Ch. 14.4 - The cable is tied to the top of the oil rig, wraps...Ch. 14.4 - The motor has an efficiency of = 0.65.Ch. 14.4 - The 50-lb crate is given a speed of 10ft/s in t =...Ch. 14.4 - The engine has a running efficiency = 0.68.Ch. 14.4 - If the drag resistance on the car due to the wind...Ch. 14.4 - Hoisting is provided by the motor M and the 60-kg...Ch. 14.4 - If the rod is smooth, determine the power...Ch. 14.4 - Determine the power developed by the power...Ch. 14.4 - A force F = (40 + s2) lb, where sis in ft, acts on...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - If the escalator in Prob.14-46 is not moving,...Ch. 14.4 - Neglect drag and rolling resistance, and the loss...Ch. 14.4 - Also, the velocity of the athletes arm acting in...Ch. 14.4 - Prob. 63PCh. 14.4 - If the motor draws in the cable at a constant rate...Ch. 14.5 - If a force F = (60t2) N, where t is in seconds, is...Ch. 14.5 - Determine the potential energy of the block that...Ch. 14.5 - Determine the potential energy in the spring that...Ch. 14.5 - The 2-kg pendulum bob is released from rest when...Ch. 14.5 - The 2-kg package leaves the conveyor belt at A...Ch. 14.5 - The 2-kg collar is given a downward velocity of 4...Ch. 14.5 - Determine the speed of the collar when it strikes...Ch. 14.5 - Determine the compression of each spring when the...Ch. 14.5 - If the guide rod is smooth, determine the speed of...Ch. 14.5 - If she is swinging to a maximum height defined by ...Ch. 14.5 - If it is then released, determine the maximum...Ch. 14.5 - Determine the speed of the collar when it reaches...Ch. 14.5 - Determine its speed when its center reaches point...Ch. 14.5 - If it is released from rest when = 0, determine...Ch. 14.5 - If the car is released from rest, determine its...Ch. 14.5 - Prob. 72PCh. 14.5 - If it is released from rest at the top of the hill...Ch. 14.5 - Determine the speed of each block when B descends...Ch. 14.5 - Determine the distance B must descend in order for...Ch. 14.5 - The spring has a stiffness k =50 N/m and an...Ch. 14.5 - Neglect friction.Ch. 14.5 - If it is attached to the 3-kg smooth collar and...Ch. 14.5 - Prob. 79PCh. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - For the calculation, locate the datum at r . Also,...Ch. 14.5 - Prob. 83PCh. 14.5 - The spring has an unstretched length of 1 m.Ch. 14.5 - A 60-kg satellite travels in free flight along an...Ch. 14.5 - If friction and air resistance can be neglected,...Ch. 14.5 - If the mass of the bumpers A and B can be...Ch. 14.5 - If the collar moves over the smooth rod, determine...Ch. 14.5 - When the 6-kg box reaches point A it has a speed...Ch. 14.5 - Determine the normal force the box exerts on the...Ch. 14.5 - Determine how high the box reaches up the surface...Ch. 14.5 - Determine the cars velocity and the normal force...Ch. 14.5 - The 10-kg sphere C is released from rest when =...Ch. 14.5 - If the chain is released from rest from the...Ch. 14.5 - Each spring has a stiffness k = 40 N/m and an...Ch. 14.5 - Prob. 96PCh. 14.5 - Initially each spring has a tension of 50 NCh. 14.5 - Determine the approximate normal force it exerts...Ch. 14.5 - If a 150-lb crate is released from rest at A,...Ch. 14.5 - During the motion, the collar is acted upon by a...Ch. 14.5 - Determine the speed at which it slides off at B....Ch. 14.5 - If the block starts from rest when the attached...Ch. 14.5 - Prob. 5RPCh. 14.5 - The motor has an efficiency of = 0.76.Ch. 14.5 - If the collar is released from rest at A and...Ch. 14.5 - respectively. They are connected together by a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q2/ The 1-kg slider starts from rest at position 1 and it moves up the incline under the action of constant force P = 55 N cause the slider to have a speed v2 = 0.5 m/s at position 2. Neglect friction, and determine the spring constant k. Take the angle 0 = 18°. 200 mm 200 mm 250 mm 250 mmarrow_forwardThe force F= 40s , acting in a constant direction on a 50-kg block, has a magnitude which varies with the position s of the block. Determine how far the block must slide before its velocity becomes 15m/s. When s=0, the block is moving to the right at v=10 m/s. The coefficient of kinetic friction between the block and the surface is µ, =0.32. 2.arrow_forwardThe slotted arm OA rotates about a fixed axis through O. At the instant under consideration, 0 = 37,0 = 44 deg/s, and 0 = 23 deg/s². Determine the magnited of the force F applied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.5-kg slider B. Neglect all friction, and let L = 0.84 m. The motion occurs in a vertical plane. Answers: F= N= i i -L m N B N 79⁰arrow_forward
- Q4: The slider block B is confined to move within the smooth slot. It is connected to two springs, each of which has a stiffness of k = 30 N/m. They are originally stretched 0.5 m when s 0 as shown. Determine the maximum distance, smax, block B moves after it is hit by block A which is originally traveling at (vA) = 8 m/s. Take e = 0.4 and the mass of each block to be 1.5 kg. Ans.: Smax. = 1.53 m 2 m k- 30 N/m (va) =8 m/s 2 m k - 30 N/marrow_forwardThe slotted arm OA rotates about a fixed axis through O. At the instant under consideration, 0 = 34°, 0 = 43 deg/s, and 0 = 28 deg/s². Determine the magnited of the force F applied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.6-kg slider B. Neglect all friction, and let L = 0.75 m. The motion occurs in a vertical plane. Part 1 -L B Answer: ay = i m Slider B moves only vertically (the y-direction). Find the acceleration (positive if up, negative if down). B m y m/s²arrow_forwardThe slotted arm OA rotates about a fixed axis through O. At the instant under consideration, 0 = 26°, Ò = 50 deg/s, and Ö – 14 deg/s². Determine the magnited of the force Fapplied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.3-kg slider B. Neglect all friction, and let L = 0.74 m. The motion occurs in a vertical plane. B т -Larrow_forward
- The rod of the fixed hydraulic cylinder is moving to the left with a speed of 94 mm/s and this speed is momentarily increasing at a rate of 440 mm/s each second at the instant when SA = 355 mm. Determine the tension in the cord at that instant. The mass of slider Bis 0.77 kg, the length of the cord is 950 mm, and the effects of the radius and friction of the small pulley at A are negligible. Find results for cases (a) negligible friction at slider B and (b) p = 0.42 at slider B. The action is in a vertical plane. 220 mm Answers: 0.77 kg B (a) Negligible friction: T= i (b) Uk=0.42: T= i N Narrow_forwardThe spring constants are k1 = 140N / m, k2 = 240N / m and the unstretched lengths of the springs are 0.3 m. If the 6 kg ring is released from rest from point A, calculate its velocity when it reaches point B. According to the given datum line, the total potential energy (Ve) at point A is A = 1116.86 J and the total elastic potential energy (Ve) at point B is B = 370.8 J. Neglect the dimensions of the bracelet. (L1 = 0.90 m, L2 = 1.80 m, h1 = 1.20 m and h2 = 2.40 m)arrow_forwardThe motor M is at rest when someone flips a switch and it starts pulling in the rope. The acceleration of the rope is uniform and such that it takes 0.50 s to achieve a retraction rate of 7.00 ft/s. Determine the tension in the rope during initial 0.50 s. The cargo C weighs 2576 lb., the weight of the ropes and pulleys is negligible, and friction in the pulleys is negligible. Note: answer to be in pounds (Ib). motor M cargo Carrow_forward
- A cart has a mass of 1.5 kg. It is given some initial push toward a sensor and is slowed by a hanging mass which makes the cart turn around and speed up as it returns to its original position. This situation is illustrated in the attached image. If the acceleration towards the sensor is 0.5 m/s2 and the accaleration away from the sensor is 0.15 m/s2, a. draw the free body diagrams for the cart moving towards the sensor and away from the sensor. b. Write Newton's law for both situations and solve for the frictional force and for the force from the hanging mass.arrow_forwardThe 1600 kg car has a velocity of v the driver sees an obstacle 175 m away, in front of the car. It takes 0.8 s for him to react and lock the brake 100 km/h when causing the car to skid. The coefficient of kinetic friction between the tires and the road is p = 0.25. Find the best correct statement(s) from the following for this situation: ,= 100 km/h Select one or more: Work done by the frictionis equal to 617.4 KW The working forces are ficion and the wejght. The car will stop just in front of the pbstacle without hittungui The car will hit the obstadle. The car skid for the distance of 157.34m,arrow_forward= The 2-kg pendulum bob moves in the vertical plane with a velocity of 10 m/s when 0 30°. Determine the initial tension in the cord and also at the instant the bob reaches u 60°. Neglect the size of the bob. (Use principle of work and energy to calculate Ve=60°). 4 2 m =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license