Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.4, Problem 63P
To determine
Themaximum power developed during the time period of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A truck of mass 6 tonnes was moving with a velocity of 145 km/hr. The brakes were applied to bring the truck to 40 km/hr in 750 m. Determine the uniform force exerted by the brakes. Also find the velocity it will reach if the same force is applied in the same direction for 8 seconds and also find the distance travelled in this period.
The uniform force exerted by the brakes in N is
The velocity it will reach if the same force is applied in the same direction for 8 seconds in m/s is
The distance travelled if the same force is applied in the same direction in this period in m is
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring
feet. The ball is started in motion from the equilibrium position with a downward velocity of 8 feet per
second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in
feet per second) .
Suppose that after t seconds the ball is y feet below its rest position. Find y in terms of t. (Note that
the positive direction is down.)
Take as the gravitational acceleration 32 feet per second per second.
y =
A particle with a mass of 1.20 kg is acted on by a force Fx acting in the x-direction. If the
magnitude of the force varies in time as shown in the figure below, determine the following.
(a) Impulse of the force (in kg m/s)
(b) Final velocity of the particle (in m/s) if it is initially at rest
(c) Find the final velocity of the particle (in m/s) if it is initially moving along the x-axis with a
velocity of -2.30 m/s.
F, (N)
8
6.
4
t (s)
2
3.
5
Chapter 14 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 14.3 - Determine the work of the force when it displaces...Ch. 14.3 - Determine the kinetic energy of the 10-kg block.Ch. 14.3 - The spring is placed between the wall and the...Ch. 14.3 - If the motor exerts a constant force of 300 N on...Ch. 14.3 - The crate is initially at rest on the ground.Ch. 14.3 - If the drag force of the parachute can be...Ch. 14.3 - When s = 0.5 m, the spring is unstretched and the...Ch. 14.3 - The 5-lb collar is pulled by a cord that passes...Ch. 14.3 - The 20-kg crate is subjected to a force having a...Ch. 14.3 - If the relation between the force and deflection...
Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - Determine the required height h of the roller...Ch. 14.3 - How far will the truck skid if it is traveling 80...Ch. 14.3 - Show that this is so, by considering the 10-kg...Ch. 14.3 - A force of F = 250 N is applied to the end at B....Ch. 14.3 - If the block has a mass of 20 kg and is suspended...Ch. 14.3 - Determine how far the block must slide before its...Ch. 14.3 - If the 6-kg collar is orginally at rest, determine...Ch. 14.3 - Select the proper value of k so that the maximum...Ch. 14.3 - Determine the speed of the brick just before it...Ch. 14.3 - Determine the speed of block A after it moves 5 ft...Ch. 14.3 - If the kinetic coefficient of friction between the...Ch. 14.3 - Determine the angle at which the box leaves the...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - Determine the maximum distance A will fall before...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - The barrier stopping force is measured versus the...Ch. 14.3 - The coefficient of kinetic friction between both...Ch. 14.3 - If the coefficient of kinetic friction between the...Ch. 14.3 - The 8-Kg block is moving with an initial speed of...Ch. 14.3 - At a given instant the 10-lb block A is moving...Ch. 14.3 - The 5-lb cylinder is falling from A with a speed...Ch. 14.3 - The propelling action is obtained by drawing the...Ch. 14.3 - By design the car cannot fall off the track,...Ch. 14.3 - If the coefficient of kinetic friction along AB is...Ch. 14.3 - Prob. 29PCh. 14.3 - If the can is prevented from moving, determine the...Ch. 14.3 - Determine the placement R of the can from the end...Ch. 14.3 - If it starts from rest when the attached spring is...Ch. 14.3 - Neglect the size of the block.Ch. 14.3 - As shown, the spring is confined by the plate P...Ch. 14.3 - Determine his speed when he reaches point B on the...Ch. 14.3 - As shown, it is confined by the plate and wall...Ch. 14.3 - If the track is to be designed so that the...Ch. 14.3 - Neglect friction.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - An elastic cord having a stiffness k = 2 lb/ft is...Ch. 14.4 - In initially, the block is at rest.Ch. 14.4 - When s = 0, the 20-kg block is moving at v = 1...Ch. 14.4 - The load weighs 100 lb and the efficiency of the...Ch. 14.4 - If the block is traveling up the inclined plane...Ch. 14.4 - determine the power input to the motor, which...Ch. 14.4 - which is increasing at a rate of aP = 6 m/s2....Ch. 14.4 - Assuming the wheels do not slip on the ground,...Ch. 14.4 - Determine the power Input for a motor necessary to...Ch. 14.4 - If mechanical friction and wind resistance are...Ch. 14.4 - manufactures a turbojet engine that is placed in a...Ch. 14.4 - If the car is brought to a stop, determine how...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - Determine the power generated. How long would a...Ch. 14.4 - Determine the maximum power that must be supplied...Ch. 14.4 - The cable is tied to the top of the oil rig, wraps...Ch. 14.4 - The motor has an efficiency of = 0.65.Ch. 14.4 - The 50-lb crate is given a speed of 10ft/s in t =...Ch. 14.4 - The engine has a running efficiency = 0.68.Ch. 14.4 - If the drag resistance on the car due to the wind...Ch. 14.4 - Hoisting is provided by the motor M and the 60-kg...Ch. 14.4 - If the rod is smooth, determine the power...Ch. 14.4 - Determine the power developed by the power...Ch. 14.4 - A force F = (40 + s2) lb, where sis in ft, acts on...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - If the escalator in Prob.14-46 is not moving,...Ch. 14.4 - Neglect drag and rolling resistance, and the loss...Ch. 14.4 - Also, the velocity of the athletes arm acting in...Ch. 14.4 - Prob. 63PCh. 14.4 - If the motor draws in the cable at a constant rate...Ch. 14.5 - If a force F = (60t2) N, where t is in seconds, is...Ch. 14.5 - Determine the potential energy of the block that...Ch. 14.5 - Determine the potential energy in the spring that...Ch. 14.5 - The 2-kg pendulum bob is released from rest when...Ch. 14.5 - The 2-kg package leaves the conveyor belt at A...Ch. 14.5 - The 2-kg collar is given a downward velocity of 4...Ch. 14.5 - Determine the speed of the collar when it strikes...Ch. 14.5 - Determine the compression of each spring when the...Ch. 14.5 - If the guide rod is smooth, determine the speed of...Ch. 14.5 - If she is swinging to a maximum height defined by ...Ch. 14.5 - If it is then released, determine the maximum...Ch. 14.5 - Determine the speed of the collar when it reaches...Ch. 14.5 - Determine its speed when its center reaches point...Ch. 14.5 - If it is released from rest when = 0, determine...Ch. 14.5 - If the car is released from rest, determine its...Ch. 14.5 - Prob. 72PCh. 14.5 - If it is released from rest at the top of the hill...Ch. 14.5 - Determine the speed of each block when B descends...Ch. 14.5 - Determine the distance B must descend in order for...Ch. 14.5 - The spring has a stiffness k =50 N/m and an...Ch. 14.5 - Neglect friction.Ch. 14.5 - If it is attached to the 3-kg smooth collar and...Ch. 14.5 - Prob. 79PCh. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - For the calculation, locate the datum at r . Also,...Ch. 14.5 - Prob. 83PCh. 14.5 - The spring has an unstretched length of 1 m.Ch. 14.5 - A 60-kg satellite travels in free flight along an...Ch. 14.5 - If friction and air resistance can be neglected,...Ch. 14.5 - If the mass of the bumpers A and B can be...Ch. 14.5 - If the collar moves over the smooth rod, determine...Ch. 14.5 - When the 6-kg box reaches point A it has a speed...Ch. 14.5 - Determine the normal force the box exerts on the...Ch. 14.5 - Determine how high the box reaches up the surface...Ch. 14.5 - Determine the cars velocity and the normal force...Ch. 14.5 - The 10-kg sphere C is released from rest when =...Ch. 14.5 - If the chain is released from rest from the...Ch. 14.5 - Each spring has a stiffness k = 40 N/m and an...Ch. 14.5 - Prob. 96PCh. 14.5 - Initially each spring has a tension of 50 NCh. 14.5 - Determine the approximate normal force it exerts...Ch. 14.5 - If a 150-lb crate is released from rest at A,...Ch. 14.5 - During the motion, the collar is acted upon by a...Ch. 14.5 - Determine the speed at which it slides off at B....Ch. 14.5 - If the block starts from rest when the attached...Ch. 14.5 - Prob. 5RPCh. 14.5 - The motor has an efficiency of = 0.76.Ch. 14.5 - If the collar is released from rest at A and...Ch. 14.5 - respectively. They are connected together by a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A bullet is fired at an initial velocity of 144 m/s horizontally (0 degrees) at the top of a 110 m tall building. Neglecting air resistance, determine the time in seconds for the bullet to hit the ground. Use the value of the gravity in 2 decimal place. Use up to 4 decimal places. NOTE: Do not assume that this is the same problem as the previous question. The numerical values for each question are different. 4.3496arrow_forwardAnswer Two Questions Only Q1// Using the Work and Energy principles Only, solve the following Question: During a test a rocket travels upward at 75 m/s, and when it is 40 m from the ground its engine fails. Determine the maximum height se reached by the rocket and its speed just before it hits the ground. While in motion the rocket is subjected to a constant downward acceleration of 9.81 m/s due to gravity. Neglect the effect of air resistance. -75 mst 4-40marrow_forwardA 1,207-kg car generates the traction force F described by the graph. The initial speed is 6 m/s, determine the car's speed (m/s) after t = 6s. %3D Note: Do not include the unit in your answer. F (kN) F 6 kN t (s) 6 2.arrow_forward
- The engine in an imaginary sports car can provide constant power to the wheels over a range of speeds from 0 to 70 miles per hour (mph). At full power, the car can accelerate from zero to 29.0 mph in time 1.00 s . You do not have to show your work. A At full power, how long would it take for the car to accelerate from 0 to 58.0 mph ? Neglect friction and air resistance. Express your answer in seconds. B A more realistic car would cause the wheels to spin in a manner that would result in the ground pushing it forward with a constant force (in contrast to the constant power in Part A). If such a sports car went from zero to 29.0mph in time 1.00s , how long would it take to go from zero to 58.0mph ?arrow_forwardAn electric blender is used to grind soaked soya beans with initial internal energy of 3000 joules. If the power consumption is 0.1 KW, with heat loss from the blender is 20 joules/sec., determine the time in minutes the operation of the blender to make the final internal energy of 27,000 joules. Pls show detailed handwritten solutionarrow_forwardA bullet is fired at an initial velocity of 155 m/s horizontally (0 degrees) at the top of a 114 m tall building. Neglecting air resistance, determine the velocity in m/s with which the bullet will hit the ground. Use the value of the gravity in 2 decimal place. Use up to 4 decimal places. NOTE: Do not assume that this is the same problem as the previous question. The numerical values for each question are different.arrow_forward
- There are two springs attached to a mass with an unknown weight. The springs have a stiffness of k = 50 N/m with an unstretched length of 5 m. When the springs are horizontal and unstretched, the unknown mass is released from rest. The mass falls 4m and the mass reaches its maximum velocity. 1. Find acceleration on the mass at its maximum velocity. 2. Find the mass of the mass. 3. To find maximum velocity, use the work-energy.arrow_forwardThe force which is moving a 10kg object from rest over the distance of 26m is shown in the graph. Calculate the total work done by the force, with the help of given graph. Q=2 in the grapharrow_forwardA truck of mass 3 tonnes was moving with a velocity of 140 km/hr. The brakes were applied to bring the truck to 20 km/hr in 10 seconds . Determine the uniform force exerted by the brakes. Also find the velocity it will reach if the same force is applied in the same direction for 600 m and also find the time taken. The uniform force exerted by the brakes in N is The velocity it will reach if the same force is applied in the same direction for 600 m in m/s is The time taken if the same force is applied in the same direction in seconds isarrow_forward
- A crane is lifting a system with a constant speed. The weight of each object is shown. Neglect the mass of the cables. Note that K stands for Kipps [1K = 1,000lbs] and is a unit of force. Do NOT convert or multiply by g. cable 1 How many forces are acting on the ring? 4. ring (2K) 6 How many forces are acting on the spreader bar? cable 2 cable 3 How many forces are acting on the load? 3. 45° 45° Are the forces on the system balanced? yes v spreader bar (20K) cable 4 cable 5 How much tension in is cable 1? K How much tension in is cable 2? K load (48K) BARNHART K How much tension in is cable 3? K How much tension in is cable 4? K How much tension in is cable 5? check answers'arrow_forwardA helicopter with a mass of 10,000 kg takes off straight up at t=0. The thrust of the engine is defined given as a function of time: FT= 95 0.18t- (kN). Where t is in units of seconds. How fast is it rising and what is its elevation at t=4s?arrow_forwardA weight concentrated at the end of a cord forms a conical pendulum for which the period is 1.250 sec. Determine the velocity (in m/s) of the weight if the cord rotates inclined at 360 with the verticalarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY