Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.4, Problem 11FP
determine the power input to the motor, which operates at an efficiency ɛ = 0.8.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. An automobile of mass M=5400 kg is moving at a speed of 30 m/s.The engine is
disengaged suddenly at t= 0 sec. Assume that the equation of motion after t-0 is given
by
5400 v-
dv
= -8.276 v-2000
dx
Where v= v(t) is the speed (m/sec) of the car at t. The left side represents Mv
(dv/dx).The first term on the right side is the aerodynamics drag,
\\\\\\\\\|\||\\\||||||
|| lland the second term is the rolling resistance of the tires.
Calculate how far the car travels until the speed reduces to 15 m/sec.(hint: the equation
of motion may be integrated as
5400 v dv
30
= Jdx=x
8.276 v+2000
Evaluate the preceding equation using Simpson rule).
When a 3000 N boat is moving at 3 m/s, the motor conks out. How much farther will the boat glide, assuming its resistance to motion is 30V Newtons where V is in meters per second.
Select the correct response:
31.6 m
29.6 m
O 32.6 m
O 30.6 m
A d.c. shunt-wound generator running at constant speed generates a voltage of 150 V at a certain value of field current. Determine the change in the generated voltage when the field current is increased by 20%, assuming theflux is proportional to the field current.
Chapter 14 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 14.3 - Determine the work of the force when it displaces...Ch. 14.3 - Determine the kinetic energy of the 10-kg block.Ch. 14.3 - The spring is placed between the wall and the...Ch. 14.3 - If the motor exerts a constant force of 300 N on...Ch. 14.3 - The crate is initially at rest on the ground.Ch. 14.3 - If the drag force of the parachute can be...Ch. 14.3 - When s = 0.5 m, the spring is unstretched and the...Ch. 14.3 - The 5-lb collar is pulled by a cord that passes...Ch. 14.3 - The 20-kg crate is subjected to a force having a...Ch. 14.3 - If the relation between the force and deflection...
Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - Determine the required height h of the roller...Ch. 14.3 - How far will the truck skid if it is traveling 80...Ch. 14.3 - Show that this is so, by considering the 10-kg...Ch. 14.3 - A force of F = 250 N is applied to the end at B....Ch. 14.3 - If the block has a mass of 20 kg and is suspended...Ch. 14.3 - Determine how far the block must slide before its...Ch. 14.3 - If the 6-kg collar is orginally at rest, determine...Ch. 14.3 - Select the proper value of k so that the maximum...Ch. 14.3 - Determine the speed of the brick just before it...Ch. 14.3 - Determine the speed of block A after it moves 5 ft...Ch. 14.3 - If the kinetic coefficient of friction between the...Ch. 14.3 - Determine the angle at which the box leaves the...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - Determine the maximum distance A will fall before...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - The barrier stopping force is measured versus the...Ch. 14.3 - The coefficient of kinetic friction between both...Ch. 14.3 - If the coefficient of kinetic friction between the...Ch. 14.3 - The 8-Kg block is moving with an initial speed of...Ch. 14.3 - At a given instant the 10-lb block A is moving...Ch. 14.3 - The 5-lb cylinder is falling from A with a speed...Ch. 14.3 - The propelling action is obtained by drawing the...Ch. 14.3 - By design the car cannot fall off the track,...Ch. 14.3 - If the coefficient of kinetic friction along AB is...Ch. 14.3 - Prob. 29PCh. 14.3 - If the can is prevented from moving, determine the...Ch. 14.3 - Determine the placement R of the can from the end...Ch. 14.3 - If it starts from rest when the attached spring is...Ch. 14.3 - Neglect the size of the block.Ch. 14.3 - As shown, the spring is confined by the plate P...Ch. 14.3 - Determine his speed when he reaches point B on the...Ch. 14.3 - As shown, it is confined by the plate and wall...Ch. 14.3 - If the track is to be designed so that the...Ch. 14.3 - Neglect friction.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - An elastic cord having a stiffness k = 2 lb/ft is...Ch. 14.4 - In initially, the block is at rest.Ch. 14.4 - When s = 0, the 20-kg block is moving at v = 1...Ch. 14.4 - The load weighs 100 lb and the efficiency of the...Ch. 14.4 - If the block is traveling up the inclined plane...Ch. 14.4 - determine the power input to the motor, which...Ch. 14.4 - which is increasing at a rate of aP = 6 m/s2....Ch. 14.4 - Assuming the wheels do not slip on the ground,...Ch. 14.4 - Determine the power Input for a motor necessary to...Ch. 14.4 - If mechanical friction and wind resistance are...Ch. 14.4 - manufactures a turbojet engine that is placed in a...Ch. 14.4 - If the car is brought to a stop, determine how...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - Determine the power generated. How long would a...Ch. 14.4 - Determine the maximum power that must be supplied...Ch. 14.4 - The cable is tied to the top of the oil rig, wraps...Ch. 14.4 - The motor has an efficiency of = 0.65.Ch. 14.4 - The 50-lb crate is given a speed of 10ft/s in t =...Ch. 14.4 - The engine has a running efficiency = 0.68.Ch. 14.4 - If the drag resistance on the car due to the wind...Ch. 14.4 - Hoisting is provided by the motor M and the 60-kg...Ch. 14.4 - If the rod is smooth, determine the power...Ch. 14.4 - Determine the power developed by the power...Ch. 14.4 - A force F = (40 + s2) lb, where sis in ft, acts on...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - If the escalator in Prob.14-46 is not moving,...Ch. 14.4 - Neglect drag and rolling resistance, and the loss...Ch. 14.4 - Also, the velocity of the athletes arm acting in...Ch. 14.4 - Prob. 63PCh. 14.4 - If the motor draws in the cable at a constant rate...Ch. 14.5 - If a force F = (60t2) N, where t is in seconds, is...Ch. 14.5 - Determine the potential energy of the block that...Ch. 14.5 - Determine the potential energy in the spring that...Ch. 14.5 - The 2-kg pendulum bob is released from rest when...Ch. 14.5 - The 2-kg package leaves the conveyor belt at A...Ch. 14.5 - The 2-kg collar is given a downward velocity of 4...Ch. 14.5 - Determine the speed of the collar when it strikes...Ch. 14.5 - Determine the compression of each spring when the...Ch. 14.5 - If the guide rod is smooth, determine the speed of...Ch. 14.5 - If she is swinging to a maximum height defined by ...Ch. 14.5 - If it is then released, determine the maximum...Ch. 14.5 - Determine the speed of the collar when it reaches...Ch. 14.5 - Determine its speed when its center reaches point...Ch. 14.5 - If it is released from rest when = 0, determine...Ch. 14.5 - If the car is released from rest, determine its...Ch. 14.5 - Prob. 72PCh. 14.5 - If it is released from rest at the top of the hill...Ch. 14.5 - Determine the speed of each block when B descends...Ch. 14.5 - Determine the distance B must descend in order for...Ch. 14.5 - The spring has a stiffness k =50 N/m and an...Ch. 14.5 - Neglect friction.Ch. 14.5 - If it is attached to the 3-kg smooth collar and...Ch. 14.5 - Prob. 79PCh. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - For the calculation, locate the datum at r . Also,...Ch. 14.5 - Prob. 83PCh. 14.5 - The spring has an unstretched length of 1 m.Ch. 14.5 - A 60-kg satellite travels in free flight along an...Ch. 14.5 - If friction and air resistance can be neglected,...Ch. 14.5 - If the mass of the bumpers A and B can be...Ch. 14.5 - If the collar moves over the smooth rod, determine...Ch. 14.5 - When the 6-kg box reaches point A it has a speed...Ch. 14.5 - Determine the normal force the box exerts on the...Ch. 14.5 - Determine how high the box reaches up the surface...Ch. 14.5 - Determine the cars velocity and the normal force...Ch. 14.5 - The 10-kg sphere C is released from rest when =...Ch. 14.5 - If the chain is released from rest from the...Ch. 14.5 - Each spring has a stiffness k = 40 N/m and an...Ch. 14.5 - Prob. 96PCh. 14.5 - Initially each spring has a tension of 50 NCh. 14.5 - Determine the approximate normal force it exerts...Ch. 14.5 - If a 150-lb crate is released from rest at A,...Ch. 14.5 - During the motion, the collar is acted upon by a...Ch. 14.5 - Determine the speed at which it slides off at B....Ch. 14.5 - If the block starts from rest when the attached...Ch. 14.5 - Prob. 5RPCh. 14.5 - The motor has an efficiency of = 0.76.Ch. 14.5 - If the collar is released from rest at A and...Ch. 14.5 - respectively. They are connected together by a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A motor develops 189 ft-lb of torque at 1745 RPM. What is the horse-power output of the motor?arrow_forwardA musical note on a piano has a frequency of 40 Hz. If the tension in the 2-m string is 308 N, and one-half wavelength occupies the string, what is the mass of the wire? 0.047 kg 0.040 kg 0.024 kg 0.031 kg 0.019 kg A block-spring system has a maximum restoring force Fmax 0.1 N. If the amplitude of the motion is A = 0,01 m and the mass of the block is m = 400 garrow_forwardDetermine the natural frequency of the system shown beside using Equilibrium Methodarrow_forward
- Determine the force exerted on the screw and the mechanical gain of the pliers illustratedarrow_forwardIn the centrifugal fan impeller there is a loss by friction of 0.4 times the kinetic head corresponding to the relative outlet velocity, and in the volute there is a gain equivalent to 0.5 times the kinetic head corresponding to the absolute velocity at exit from the runner. The impeller has an inner radius of 250 mm and width of 187.5 mm; the values at exit are 375 mm and 125 mm, respectively. There is no whirl at inlet, and at outlet the blades are backward facing at 70° to the tangent. The discharge of air is 5.7 m3/s when the speed is 13.5 rps, the density of the air is sensibly constant at 1.25 kg/m3 throughout, and mechanical losses account for 220 Watts. Neglecting the thickness of the blades and whirl slip, determine the following: A) The head gained, in meters, across the fan. B) The Brake Horsepower required to drive the fan. 25.8 7.9 7.9 25.8 83.5 83.5 O 14.3 46.4 46.4 O 14.3arrow_forwardIn the centrifugal fan impeller there is a loss by friction of 0.4 times the kinetic head corresponding to the relative outlet velocity, and in the volute there is a gain equivalent to 0.5 times the kinetic head corresponding to the absolute velocity at exit from the runner. The impeller has an inner radius of 250 mm and width of 187.5 mm; the values at exit are 375 mm and 125 mm, respectively. There is no whirl at inlet, and at outlet the blades are backward facing at 70° to the tangent. The discharge of air is 5.7 m3/s when the speed is 13.5 rps, the density of the air is sensibly constant at 1.25 kg/m3 throughout, and mechanical losses account for 220 Watts. Neglecting the thickness of the blades and whirl slip, determine the following:The head gained, in meters, across the fan. The Brake Horsepower required to drive the fan.arrow_forward
- In the centrifugal fan impeller there is a loss by friction of 0.4 times the kinetic head corresponding to the relative outlet velocity, and in the volute there is a gain equivalent to 0.5 times the kinetic head corresponding to the absolute velocity at exit from the runner. The impeller has an inner radius of 250 mm and width of 187.5 mm; the values at exit are 375 mm and 125 mm, respectively. There is no whirl at inlet, and at outlet the blades are backward facing at 70° to the tangent. The discharge of air is 5.7 m3/s when the speed is 13.5 rps, the density of the air is sensibly constant at 1.25 kg/m3 throughout, and mechanical losses account for 220 Watts. Neglecting the thickness of the blades and whirl slip, determine the following: The head gained, in meters, across the fan. The Brake Horsepower required to drive the fan.arrow_forwardParvinbhaiarrow_forwardA six-pole lap wound armature rotating at 350 rpm is required to generate 260 V. The effective flux per pole is about 0.05 Wb. If the armature has 120 slots, determine the suitable number of conductors per slot and hence determine the actual value of flux required to generate the same voltagearrow_forward
- Use an energy method to obtain the expression for the natural frequency of thesystem shown.arrow_forwardRusharrow_forwardA cart on an air track is attached to one of the fixed ends by a spring. The cart is released with a displacement of 31 cm from the equilibrium position at t = 0 s. Att = 0.20 s, the cart has a displacement of 27 cm. a. Draw a picture of the cart when it is released and when it is at t = 0.20 s. Show the displacements of 31 cm and 27 cm in your diagrams. b. Determine the period of the carts motion.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE LElectrical Transformers and Rotating MachinesMechanical EngineeringISBN:9781305494817Author:Stephen L. HermanPublisher:Cengage Learning
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Electrical Transformers and Rotating Machines
Mechanical Engineering
ISBN:9781305494817
Author:Stephen L. Herman
Publisher:Cengage Learning
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY