Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.5, Problem 95P
Each spring has a stiffness k = 40 N/m and an unstretched length of 2m.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
what is the compression in 2 springs after
the block A with 50 N is falling off on it from
the rest
note :-Initially both springs are unstretched.
A
10m
5m
20N/m
= 30 N/m
For the system of springs shown below derive the formula for the overallstiffness cΣ and calculate the overall displacement s if F=200 N, c1=2300 N/m, andc2=2100 N/m.
SHOW YOUR STEP BY STEP SOLUTION.
1. Assuming that the displacement (x) resulting from the
application of a force F at a point A is small, find the
equivalent spring constant of the system that relates the
applied force F to the displacement x.
k- 2k
Chapter 14 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 14.3 - Determine the work of the force when it displaces...Ch. 14.3 - Determine the kinetic energy of the 10-kg block.Ch. 14.3 - The spring is placed between the wall and the...Ch. 14.3 - If the motor exerts a constant force of 300 N on...Ch. 14.3 - The crate is initially at rest on the ground.Ch. 14.3 - If the drag force of the parachute can be...Ch. 14.3 - When s = 0.5 m, the spring is unstretched and the...Ch. 14.3 - The 5-lb collar is pulled by a cord that passes...Ch. 14.3 - The 20-kg crate is subjected to a force having a...Ch. 14.3 - If the relation between the force and deflection...
Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - Determine the required height h of the roller...Ch. 14.3 - How far will the truck skid if it is traveling 80...Ch. 14.3 - Show that this is so, by considering the 10-kg...Ch. 14.3 - A force of F = 250 N is applied to the end at B....Ch. 14.3 - If the block has a mass of 20 kg and is suspended...Ch. 14.3 - Determine how far the block must slide before its...Ch. 14.3 - If the 6-kg collar is orginally at rest, determine...Ch. 14.3 - Select the proper value of k so that the maximum...Ch. 14.3 - Determine the speed of the brick just before it...Ch. 14.3 - Determine the speed of block A after it moves 5 ft...Ch. 14.3 - If the kinetic coefficient of friction between the...Ch. 14.3 - Determine the angle at which the box leaves the...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - Determine the maximum distance A will fall before...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - The barrier stopping force is measured versus the...Ch. 14.3 - The coefficient of kinetic friction between both...Ch. 14.3 - If the coefficient of kinetic friction between the...Ch. 14.3 - The 8-Kg block is moving with an initial speed of...Ch. 14.3 - At a given instant the 10-lb block A is moving...Ch. 14.3 - The 5-lb cylinder is falling from A with a speed...Ch. 14.3 - The propelling action is obtained by drawing the...Ch. 14.3 - By design the car cannot fall off the track,...Ch. 14.3 - If the coefficient of kinetic friction along AB is...Ch. 14.3 - Prob. 29PCh. 14.3 - If the can is prevented from moving, determine the...Ch. 14.3 - Determine the placement R of the can from the end...Ch. 14.3 - If it starts from rest when the attached spring is...Ch. 14.3 - Neglect the size of the block.Ch. 14.3 - As shown, the spring is confined by the plate P...Ch. 14.3 - Determine his speed when he reaches point B on the...Ch. 14.3 - As shown, it is confined by the plate and wall...Ch. 14.3 - If the track is to be designed so that the...Ch. 14.3 - Neglect friction.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - An elastic cord having a stiffness k = 2 lb/ft is...Ch. 14.4 - In initially, the block is at rest.Ch. 14.4 - When s = 0, the 20-kg block is moving at v = 1...Ch. 14.4 - The load weighs 100 lb and the efficiency of the...Ch. 14.4 - If the block is traveling up the inclined plane...Ch. 14.4 - determine the power input to the motor, which...Ch. 14.4 - which is increasing at a rate of aP = 6 m/s2....Ch. 14.4 - Assuming the wheels do not slip on the ground,...Ch. 14.4 - Determine the power Input for a motor necessary to...Ch. 14.4 - If mechanical friction and wind resistance are...Ch. 14.4 - manufactures a turbojet engine that is placed in a...Ch. 14.4 - If the car is brought to a stop, determine how...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - Determine the power generated. How long would a...Ch. 14.4 - Determine the maximum power that must be supplied...Ch. 14.4 - The cable is tied to the top of the oil rig, wraps...Ch. 14.4 - The motor has an efficiency of = 0.65.Ch. 14.4 - The 50-lb crate is given a speed of 10ft/s in t =...Ch. 14.4 - The engine has a running efficiency = 0.68.Ch. 14.4 - If the drag resistance on the car due to the wind...Ch. 14.4 - Hoisting is provided by the motor M and the 60-kg...Ch. 14.4 - If the rod is smooth, determine the power...Ch. 14.4 - Determine the power developed by the power...Ch. 14.4 - A force F = (40 + s2) lb, where sis in ft, acts on...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - If the escalator in Prob.14-46 is not moving,...Ch. 14.4 - Neglect drag and rolling resistance, and the loss...Ch. 14.4 - Also, the velocity of the athletes arm acting in...Ch. 14.4 - Prob. 63PCh. 14.4 - If the motor draws in the cable at a constant rate...Ch. 14.5 - If a force F = (60t2) N, where t is in seconds, is...Ch. 14.5 - Determine the potential energy of the block that...Ch. 14.5 - Determine the potential energy in the spring that...Ch. 14.5 - The 2-kg pendulum bob is released from rest when...Ch. 14.5 - The 2-kg package leaves the conveyor belt at A...Ch. 14.5 - The 2-kg collar is given a downward velocity of 4...Ch. 14.5 - Determine the speed of the collar when it strikes...Ch. 14.5 - Determine the compression of each spring when the...Ch. 14.5 - If the guide rod is smooth, determine the speed of...Ch. 14.5 - If she is swinging to a maximum height defined by ...Ch. 14.5 - If it is then released, determine the maximum...Ch. 14.5 - Determine the speed of the collar when it reaches...Ch. 14.5 - Determine its speed when its center reaches point...Ch. 14.5 - If it is released from rest when = 0, determine...Ch. 14.5 - If the car is released from rest, determine its...Ch. 14.5 - Prob. 72PCh. 14.5 - If it is released from rest at the top of the hill...Ch. 14.5 - Determine the speed of each block when B descends...Ch. 14.5 - Determine the distance B must descend in order for...Ch. 14.5 - The spring has a stiffness k =50 N/m and an...Ch. 14.5 - Neglect friction.Ch. 14.5 - If it is attached to the 3-kg smooth collar and...Ch. 14.5 - Prob. 79PCh. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - For the calculation, locate the datum at r . Also,...Ch. 14.5 - Prob. 83PCh. 14.5 - The spring has an unstretched length of 1 m.Ch. 14.5 - A 60-kg satellite travels in free flight along an...Ch. 14.5 - If friction and air resistance can be neglected,...Ch. 14.5 - If the mass of the bumpers A and B can be...Ch. 14.5 - If the collar moves over the smooth rod, determine...Ch. 14.5 - When the 6-kg box reaches point A it has a speed...Ch. 14.5 - Determine the normal force the box exerts on the...Ch. 14.5 - Determine how high the box reaches up the surface...Ch. 14.5 - Determine the cars velocity and the normal force...Ch. 14.5 - The 10-kg sphere C is released from rest when =...Ch. 14.5 - If the chain is released from rest from the...Ch. 14.5 - Each spring has a stiffness k = 40 N/m and an...Ch. 14.5 - Prob. 96PCh. 14.5 - Initially each spring has a tension of 50 NCh. 14.5 - Determine the approximate normal force it exerts...Ch. 14.5 - If a 150-lb crate is released from rest at A,...Ch. 14.5 - During the motion, the collar is acted upon by a...Ch. 14.5 - Determine the speed at which it slides off at B....Ch. 14.5 - If the block starts from rest when the attached...Ch. 14.5 - Prob. 5RPCh. 14.5 - The motor has an efficiency of = 0.76.Ch. 14.5 - If the collar is released from rest at A and...Ch. 14.5 - respectively. They are connected together by a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- When a helical spring is having non-linear characteristics, then the value of the spring constant is variable. Select one: True Falsearrow_forward1. Design a compression helical spring to carry a load of 500 N with a deflection of 25 mm. The spring index may be taken as 8. Assume the following values for the spring material: Permissible shear stress = 350 MPa Modulus of rigidity = 84 kN/mm2 4С - 1 0.615 Wahl's factor where C-spring index. 4С - 4arrow_forwardDetermine the equivalent spring stiffness constant of the following spring in series and parallel. 500 N/m 200 N/m wwwww 250 N/m 100 N/m 120 N/m Farrow_forward
- For the spring assemblages shown in Figures 2, determine the node Displacements, the forces in each element, and the reactions. Use the direct stiffness Method for all problems. Su0 KN/ m 2EN 3. 3 3 Suo KNIM Suo EN/m 3. ZEN Fig 2arrow_forwardQ5/ In vehicle suspension design it is desirable to minimize the mass of all components. You have been asked to select a material and dimensions for a light spring to replace the steel leaf-spring of an existing truck suspension. The existing leaf-spring is a beam, shown schematically in the figure. The new spring must have the same length L and stiffness S as the existing one, and must deflect through a maximum safe displacement 8max without failure. The width b and thickness t are free variables. L Load F 6= 1 FL³ 48 EI 10₂L² 6 #E 1=bt³/12 8max = Derive a material index for the selection of a material for this application. Note that this is a problem with two free variables: b and t; and there are two constraints, one on safe deflection 8max and the other on stiffness S. Use the two constraints to fix free variables.arrow_forwardFind equivalent spring stiffnessarrow_forward
- A rod has a diameter of 1/2 inch and a length of 4 feet. Determine the equivalent spring constant of the rod in pounds per foot. (E=10x10^6 psi)arrow_forwardA helical compression spring is used to absorb heavy vibrations. Apply mechanical engineering design theory and by using the values given in the table below, (i) Calculate the force applied on the spring. (ii) Determine the number of turns. (iii) Determine the spring stiffness. (iv) Calculate the free length. 5 maiks (v) Would you recommend to increase the number of turns and free length of the spring for this application ? Why? (answer in one/two sentences only). Spring data Туре Helical squared and ground ends Initial Compression of spring 30 mm 80 mm Further Compression of spring after applying heavy load Shear Stress Modulus of rigidity 750 N/mm2 82000 MPa Wire diameter 8 mm Spring Indexarrow_forwardDesign a helical spring to be used in spring balance with a wire diameter of 6mm and the outside diameter should be limited to 66mm. if the permissible shear stress of the spring material is 325 N/mm? and the Modulus of rigidity is 85kN/mm?. a) Compute the deflection of spring per active turn and the axial load on the spring considering the effect of curvature, take Wahl's factor as Kw= 1.1 b) Calculate the value of axial load neglecting the effect of stress factor. **Note: Please upload your handwritten working/solution to the link provided. The value of Mean diameter of the spring in mm . The Spring Index is. Shear stress factor, neglecting curvature effect . Deflection per active turn in mm Axial Load W in N .. Axial Load W in N. considering effect of curvature .arrow_forward
- Determine the equivalent spring stiffness constant of the following spring in series and parallel. 60 N/m 90 N/m wwwm 120 N/m 150 N/m 30 N/m www 300 N/m Farrow_forwardA helical spring is provided with a rigid plate at each end. A bolt passes through the spring and the end plates. By turning the nut, the spring is compressed until the coils touch. The height of the unloaded spring is 600 mm, its mean coil diameter is 100 mm and the diameter of the spring wire is 28 mm. The spring has 18 coils. The diameter of the bolt is 25 mm and the plates are each 25 mm thick. Calculate the elongation of the bolt when the spring is fully compressed as well as the stress in the spring wire (take E = 200 GPa and G = 80 GPa).arrow_forwardThe helical compression spring is made of 12mm wire diameter with 132 mm mean diameter. Determine stiffness of the spring when modulus of rigidity G=80 kN/mm2,number of turn is 13 and axial load is 190N. Select one: O a. 12N/mm O b. 4.5N/mm O c. 9.5N/mm O d. 17N/mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license