Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14.3, Problem 41P
An elastic cord having a stiffness k = 2 lb/ft is attached to the block at B and to the base of the semicylinder at point C. If the block is released from rest at A (θ = 0°), determine the unstretched length of the cord so the block begins to leave the semicylinder at the instant θ = 45°. Neglect the size of the block.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The spring-held follower AB has a weight of 0.75 lb and moves
back and forth as its end rolls on the contoured surface of the
cam, where r=0.2 ft and z = (0.1sine) ft. If the cam is rotating at a
constant rate of 6 rad/s, determine the force at the end A of the
follower when e=90°. In this position the spring is compressed
0.4 ft. Neglect friction at the bearing C.
z = 0.1 sin 20
0.2 ft
e = 6 rad/s
k = 12 lb/ft
Fs
FA-
T
The 50-1b block rests on the smooth surface. A force F = (40+s) Ib, which s isin ft, acts on the block in the direction shown. If the spring is originally unstretched (s = 0) and the block is at rest, determine the power developed by the force the instant theblock has moved s = 1.5 ft.F30°k = 20 lb/ft
The weight of the spring held follower AB is 0.381 kg and moves back and forth as its end rolls on the contoured surface of the cam, where r = 0.2 ft and z = (0.1sin20) ft. If the cam is
rotating at a constant rate of 6 rad/s, determine the force, in Ib, at the end A of the follower where e = 45°. In this position, the spring is compressed 0.4 ft. Neglect friction at the bearing
C. Round your answer to 3 decimal places.
z = 0.1 sin 20
0.2 ft
e = 6 rad/s
A
k = 12 lb/ft
Chapter 14 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 14.3 - Determine the work of the force when it displaces...Ch. 14.3 - Determine the kinetic energy of the 10-kg block.Ch. 14.3 - The spring is placed between the wall and the...Ch. 14.3 - If the motor exerts a constant force of 300 N on...Ch. 14.3 - The crate is initially at rest on the ground.Ch. 14.3 - If the drag force of the parachute can be...Ch. 14.3 - When s = 0.5 m, the spring is unstretched and the...Ch. 14.3 - The 5-lb collar is pulled by a cord that passes...Ch. 14.3 - The 20-kg crate is subjected to a force having a...Ch. 14.3 - If the relation between the force and deflection...
Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - Determine the required height h of the roller...Ch. 14.3 - How far will the truck skid if it is traveling 80...Ch. 14.3 - Show that this is so, by considering the 10-kg...Ch. 14.3 - A force of F = 250 N is applied to the end at B....Ch. 14.3 - If the block has a mass of 20 kg and is suspended...Ch. 14.3 - Determine how far the block must slide before its...Ch. 14.3 - If the 6-kg collar is orginally at rest, determine...Ch. 14.3 - Select the proper value of k so that the maximum...Ch. 14.3 - Determine the speed of the brick just before it...Ch. 14.3 - Determine the speed of block A after it moves 5 ft...Ch. 14.3 - If the kinetic coefficient of friction between the...Ch. 14.3 - Determine the angle at which the box leaves the...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - Determine the maximum distance A will fall before...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - The barrier stopping force is measured versus the...Ch. 14.3 - The coefficient of kinetic friction between both...Ch. 14.3 - If the coefficient of kinetic friction between the...Ch. 14.3 - The 8-Kg block is moving with an initial speed of...Ch. 14.3 - At a given instant the 10-lb block A is moving...Ch. 14.3 - The 5-lb cylinder is falling from A with a speed...Ch. 14.3 - The propelling action is obtained by drawing the...Ch. 14.3 - By design the car cannot fall off the track,...Ch. 14.3 - If the coefficient of kinetic friction along AB is...Ch. 14.3 - Prob. 29PCh. 14.3 - If the can is prevented from moving, determine the...Ch. 14.3 - Determine the placement R of the can from the end...Ch. 14.3 - If it starts from rest when the attached spring is...Ch. 14.3 - Neglect the size of the block.Ch. 14.3 - As shown, the spring is confined by the plate P...Ch. 14.3 - Determine his speed when he reaches point B on the...Ch. 14.3 - As shown, it is confined by the plate and wall...Ch. 14.3 - If the track is to be designed so that the...Ch. 14.3 - Neglect friction.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - An elastic cord having a stiffness k = 2 lb/ft is...Ch. 14.4 - In initially, the block is at rest.Ch. 14.4 - When s = 0, the 20-kg block is moving at v = 1...Ch. 14.4 - The load weighs 100 lb and the efficiency of the...Ch. 14.4 - If the block is traveling up the inclined plane...Ch. 14.4 - determine the power input to the motor, which...Ch. 14.4 - which is increasing at a rate of aP = 6 m/s2....Ch. 14.4 - Assuming the wheels do not slip on the ground,...Ch. 14.4 - Determine the power Input for a motor necessary to...Ch. 14.4 - If mechanical friction and wind resistance are...Ch. 14.4 - manufactures a turbojet engine that is placed in a...Ch. 14.4 - If the car is brought to a stop, determine how...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - Determine the power generated. How long would a...Ch. 14.4 - Determine the maximum power that must be supplied...Ch. 14.4 - The cable is tied to the top of the oil rig, wraps...Ch. 14.4 - The motor has an efficiency of = 0.65.Ch. 14.4 - The 50-lb crate is given a speed of 10ft/s in t =...Ch. 14.4 - The engine has a running efficiency = 0.68.Ch. 14.4 - If the drag resistance on the car due to the wind...Ch. 14.4 - Hoisting is provided by the motor M and the 60-kg...Ch. 14.4 - If the rod is smooth, determine the power...Ch. 14.4 - Determine the power developed by the power...Ch. 14.4 - A force F = (40 + s2) lb, where sis in ft, acts on...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - If the escalator in Prob.14-46 is not moving,...Ch. 14.4 - Neglect drag and rolling resistance, and the loss...Ch. 14.4 - Also, the velocity of the athletes arm acting in...Ch. 14.4 - Prob. 63PCh. 14.4 - If the motor draws in the cable at a constant rate...Ch. 14.5 - If a force F = (60t2) N, where t is in seconds, is...Ch. 14.5 - Determine the potential energy of the block that...Ch. 14.5 - Determine the potential energy in the spring that...Ch. 14.5 - The 2-kg pendulum bob is released from rest when...Ch. 14.5 - The 2-kg package leaves the conveyor belt at A...Ch. 14.5 - The 2-kg collar is given a downward velocity of 4...Ch. 14.5 - Determine the speed of the collar when it strikes...Ch. 14.5 - Determine the compression of each spring when the...Ch. 14.5 - If the guide rod is smooth, determine the speed of...Ch. 14.5 - If she is swinging to a maximum height defined by ...Ch. 14.5 - If it is then released, determine the maximum...Ch. 14.5 - Determine the speed of the collar when it reaches...Ch. 14.5 - Determine its speed when its center reaches point...Ch. 14.5 - If it is released from rest when = 0, determine...Ch. 14.5 - If the car is released from rest, determine its...Ch. 14.5 - Prob. 72PCh. 14.5 - If it is released from rest at the top of the hill...Ch. 14.5 - Determine the speed of each block when B descends...Ch. 14.5 - Determine the distance B must descend in order for...Ch. 14.5 - The spring has a stiffness k =50 N/m and an...Ch. 14.5 - Neglect friction.Ch. 14.5 - If it is attached to the 3-kg smooth collar and...Ch. 14.5 - Prob. 79PCh. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - For the calculation, locate the datum at r . Also,...Ch. 14.5 - Prob. 83PCh. 14.5 - The spring has an unstretched length of 1 m.Ch. 14.5 - A 60-kg satellite travels in free flight along an...Ch. 14.5 - If friction and air resistance can be neglected,...Ch. 14.5 - If the mass of the bumpers A and B can be...Ch. 14.5 - If the collar moves over the smooth rod, determine...Ch. 14.5 - When the 6-kg box reaches point A it has a speed...Ch. 14.5 - Determine the normal force the box exerts on the...Ch. 14.5 - Determine how high the box reaches up the surface...Ch. 14.5 - Determine the cars velocity and the normal force...Ch. 14.5 - The 10-kg sphere C is released from rest when =...Ch. 14.5 - If the chain is released from rest from the...Ch. 14.5 - Each spring has a stiffness k = 40 N/m and an...Ch. 14.5 - Prob. 96PCh. 14.5 - Initially each spring has a tension of 50 NCh. 14.5 - Determine the approximate normal force it exerts...Ch. 14.5 - If a 150-lb crate is released from rest at A,...Ch. 14.5 - During the motion, the collar is acted upon by a...Ch. 14.5 - Determine the speed at which it slides off at B....Ch. 14.5 - If the block starts from rest when the attached...Ch. 14.5 - Prob. 5RPCh. 14.5 - The motor has an efficiency of = 0.76.Ch. 14.5 - If the collar is released from rest at A and...Ch. 14.5 - respectively. They are connected together by a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4 m M = (30t²) N•m F = 15t N. If the rod of negligible mass is subjected to a couple moment of M=29t2 N;M where t is the time in seconds, and the engine of the car supplies a braking force F= 15t N to the wheels, determine the speed of the car at t= 8s. The car at t=0s a a speed of 7 m/s. The total mass of the car and the driver is 158 kg. Neglect the size of the car.arrow_forwardThe T-shaped body of total mass m = 6.5 kg is constructed of uniform rod. If it is released from rest while in the position shown, determine the vertical force reaction at O as it passes the vertical position (124° after release). The distance b is 1.04 m.arrow_forwardThe steel ingot has a mass of 1940 kg. It travels along the conveyor at a speed v= 0,2 m/s when it collides with the "nested" spring assembly. If the stiffness of the outer spring is Ka= 5 kN/m, determine the required stiffness Kb of the inner spring so that the motion of the ingot is stopped at the moment the front, C, of the ingot is 0.3 m from the wall. (Answer in kN/m) 0.5 m -0.45 m kB k Barrow_forward
- The spring-held follower AB has a mass of 0.5 kg and moves back andforth as its end rolls on the contoured surface of the cam, where r = 0.15 m and z =(0.02 cos 2θ) m. If the cam is rotating at a constant rate of 30 rad/s, determine theforce component Fz at the end A of the follower when θ = 30°. The spring isuncompressed when θ = 90°. Neglect friction at the bearing C.arrow_forwardThe spring constants are k1 = 140N / m, k2 = 240N / m and the unstretched lengths of the springs are 0.3 m. If the 6 kg ring is released from rest from point A, calculate its velocity when it reaches point B. According to the given datum line, the total potential energy (Ve) at point A is A = 1116.86 J and the total elastic potential energy (Ve) at point B is B = 370.8 J. Neglect the dimensions of the bracelet. (L1 = 0.90 m, L2 = 1.80 m, h1 = 1.20 m and h2 = 2.40 m)arrow_forward= 0, and then it is subjected to the force P shown. Note 20 sec. If μs 0.6, k = 0.4, and 0 = 25°, determine The 100-lb block is stationary at time t that the force is zero for all times beyond t = the velocity v of the block at time t = = 25 sec. Also, calculate the time t at which the block comes to rest again. (v = 89.4 ft/sec, the block never stops) P P,lb 15 W μς, μκ Ꮎ t, sec 0 10 20arrow_forward
- The 250-N block rests upon a level plane for which fk = 0.2. It is pulled by force P= 100N inclined at 20o with the horizontal. Find the velocity of the block after it moves 20m starting from rest.arrow_forwardDetermine the steady-state angle α if the constant force P = 180 N is applied to the cart of mass M = 9 kg. The cart travels on the slope of angle θ = 16°. The pendulum bob has mass m = 3 kg and the rigid bar of length L = 1.2 m has negligible mass. Ignore all friction.arrow_forwardThe smooth block B, having a mass of 1 kg, is attached to the vertex of the right circular cone using a light cord. If the block has a speed of 0.6 m/s around the cone, determine the tension in the cord and the reaction which the cone exerts on the block. Neglect the size of the block. 200 mm 400 mm 300 mmarrow_forward
- The tractor is used to lift the 170-kg load B with the 24-m-long rope, boom, and pulley system. The tractor travels to the right with an acceleration of 4 m/s² and has a velocity of 5 m/s at the instant SA = 5 m. When SA = 0, SB = 0. (Figure 1) Figure 12 m -SA 1 of 1 Part A Determine the tension in the rope at this instant. Express your answer to three significant figu T = Value N Submit Previous Answers Request Answ X Incorrect; Try Againarrow_forward45° 0.4 m OB •G > P = 50 N 0.6m 1 m Determine the force developed in the links and the acceleration of the bar's mass center G immediately after the cord fail. The bar has a mass of 20 kg. There is no force in the cut cord. Neglect the mass of links AB and CD. Since v = 0, then a, = 0.arrow_forwardNonearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License