Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.3, Problem 22P
If the coefficient of kinetic friction between the plane and the block is μk, determine the total distance traveled by the block before it comes to rest.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
When s = 55 cm, the spring is unstretched and the 9-kg
block has a speed of 6.19 m/s down the smooth plane. If
the coefficient of kinetic friction between the surface and
the block is 0.25, find the distance (mm) s at which the
block stops.
k = 208 N/m
6.19 m/s
F = 118 N
30
The force F, acting in a constant direction on the 24-kg block, has a magnitude which varies with the position s of the block. When s = 0 the block is moving to the right at v = 6 m/s. The coefficient of kinetic friction between the block and surface is μk = 0.3. Determine how far the block must slide before its velocity becomes 15 m/s. No hand written solution and no image
1. If the 50-kg crate starts from rest and achieves a velocity of v = 4 m/s when it travels a distance of 5 m to
the right, determine the magnitude of the force P acting on the crate. The coefficient of static friction
between the crate and the ground is u. = 0.3
30
Chapter 14 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 14.3 - Determine the work of the force when it displaces...Ch. 14.3 - Determine the kinetic energy of the 10-kg block.Ch. 14.3 - The spring is placed between the wall and the...Ch. 14.3 - If the motor exerts a constant force of 300 N on...Ch. 14.3 - The crate is initially at rest on the ground.Ch. 14.3 - If the drag force of the parachute can be...Ch. 14.3 - When s = 0.5 m, the spring is unstretched and the...Ch. 14.3 - The 5-lb collar is pulled by a cord that passes...Ch. 14.3 - The 20-kg crate is subjected to a force having a...Ch. 14.3 - If the relation between the force and deflection...
Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - If it is originally at rest, determine the...Ch. 14.3 - Determine the required height h of the roller...Ch. 14.3 - How far will the truck skid if it is traveling 80...Ch. 14.3 - Show that this is so, by considering the 10-kg...Ch. 14.3 - A force of F = 250 N is applied to the end at B....Ch. 14.3 - If the block has a mass of 20 kg and is suspended...Ch. 14.3 - Determine how far the block must slide before its...Ch. 14.3 - If the 6-kg collar is orginally at rest, determine...Ch. 14.3 - Select the proper value of k so that the maximum...Ch. 14.3 - Determine the speed of the brick just before it...Ch. 14.3 - Determine the speed of block A after it moves 5 ft...Ch. 14.3 - If the kinetic coefficient of friction between the...Ch. 14.3 - Determine the angle at which the box leaves the...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - Determine the maximum distance A will fall before...Ch. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - The barrier stopping force is measured versus the...Ch. 14.3 - The coefficient of kinetic friction between both...Ch. 14.3 - If the coefficient of kinetic friction between the...Ch. 14.3 - The 8-Kg block is moving with an initial speed of...Ch. 14.3 - At a given instant the 10-lb block A is moving...Ch. 14.3 - The 5-lb cylinder is falling from A with a speed...Ch. 14.3 - The propelling action is obtained by drawing the...Ch. 14.3 - By design the car cannot fall off the track,...Ch. 14.3 - If the coefficient of kinetic friction along AB is...Ch. 14.3 - Prob. 29PCh. 14.3 - If the can is prevented from moving, determine the...Ch. 14.3 - Determine the placement R of the can from the end...Ch. 14.3 - If it starts from rest when the attached spring is...Ch. 14.3 - Neglect the size of the block.Ch. 14.3 - As shown, the spring is confined by the plate P...Ch. 14.3 - Determine his speed when he reaches point B on the...Ch. 14.3 - As shown, it is confined by the plate and wall...Ch. 14.3 - If the track is to be designed so that the...Ch. 14.3 - Neglect friction.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - Neglect friction and the size of the pulley.Ch. 14.3 - An elastic cord having a stiffness k = 2 lb/ft is...Ch. 14.4 - In initially, the block is at rest.Ch. 14.4 - When s = 0, the 20-kg block is moving at v = 1...Ch. 14.4 - The load weighs 100 lb and the efficiency of the...Ch. 14.4 - If the block is traveling up the inclined plane...Ch. 14.4 - determine the power input to the motor, which...Ch. 14.4 - which is increasing at a rate of aP = 6 m/s2....Ch. 14.4 - Assuming the wheels do not slip on the ground,...Ch. 14.4 - Determine the power Input for a motor necessary to...Ch. 14.4 - If mechanical friction and wind resistance are...Ch. 14.4 - manufactures a turbojet engine that is placed in a...Ch. 14.4 - If the car is brought to a stop, determine how...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - Determine the power generated. How long would a...Ch. 14.4 - Determine the maximum power that must be supplied...Ch. 14.4 - The cable is tied to the top of the oil rig, wraps...Ch. 14.4 - The motor has an efficiency of = 0.65.Ch. 14.4 - The 50-lb crate is given a speed of 10ft/s in t =...Ch. 14.4 - The engine has a running efficiency = 0.68.Ch. 14.4 - If the drag resistance on the car due to the wind...Ch. 14.4 - Hoisting is provided by the motor M and the 60-kg...Ch. 14.4 - If the rod is smooth, determine the power...Ch. 14.4 - Determine the power developed by the power...Ch. 14.4 - A force F = (40 + s2) lb, where sis in ft, acts on...Ch. 14.4 - If the steps are 125 mm high and 250 mm in length,...Ch. 14.4 - If the escalator in Prob.14-46 is not moving,...Ch. 14.4 - Neglect drag and rolling resistance, and the loss...Ch. 14.4 - Also, the velocity of the athletes arm acting in...Ch. 14.4 - Prob. 63PCh. 14.4 - If the motor draws in the cable at a constant rate...Ch. 14.5 - If a force F = (60t2) N, where t is in seconds, is...Ch. 14.5 - Determine the potential energy of the block that...Ch. 14.5 - Determine the potential energy in the spring that...Ch. 14.5 - The 2-kg pendulum bob is released from rest when...Ch. 14.5 - The 2-kg package leaves the conveyor belt at A...Ch. 14.5 - The 2-kg collar is given a downward velocity of 4...Ch. 14.5 - Determine the speed of the collar when it strikes...Ch. 14.5 - Determine the compression of each spring when the...Ch. 14.5 - If the guide rod is smooth, determine the speed of...Ch. 14.5 - If she is swinging to a maximum height defined by ...Ch. 14.5 - If it is then released, determine the maximum...Ch. 14.5 - Determine the speed of the collar when it reaches...Ch. 14.5 - Determine its speed when its center reaches point...Ch. 14.5 - If it is released from rest when = 0, determine...Ch. 14.5 - If the car is released from rest, determine its...Ch. 14.5 - Prob. 72PCh. 14.5 - If it is released from rest at the top of the hill...Ch. 14.5 - Determine the speed of each block when B descends...Ch. 14.5 - Determine the distance B must descend in order for...Ch. 14.5 - The spring has a stiffness k =50 N/m and an...Ch. 14.5 - Neglect friction.Ch. 14.5 - If it is attached to the 3-kg smooth collar and...Ch. 14.5 - Prob. 79PCh. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - If the arm is pulled back such that s = 100 mm and...Ch. 14.5 - For the calculation, locate the datum at r . Also,...Ch. 14.5 - Prob. 83PCh. 14.5 - The spring has an unstretched length of 1 m.Ch. 14.5 - A 60-kg satellite travels in free flight along an...Ch. 14.5 - If friction and air resistance can be neglected,...Ch. 14.5 - If the mass of the bumpers A and B can be...Ch. 14.5 - If the collar moves over the smooth rod, determine...Ch. 14.5 - When the 6-kg box reaches point A it has a speed...Ch. 14.5 - Determine the normal force the box exerts on the...Ch. 14.5 - Determine how high the box reaches up the surface...Ch. 14.5 - Determine the cars velocity and the normal force...Ch. 14.5 - The 10-kg sphere C is released from rest when =...Ch. 14.5 - If the chain is released from rest from the...Ch. 14.5 - Each spring has a stiffness k = 40 N/m and an...Ch. 14.5 - Prob. 96PCh. 14.5 - Initially each spring has a tension of 50 NCh. 14.5 - Determine the approximate normal force it exerts...Ch. 14.5 - If a 150-lb crate is released from rest at A,...Ch. 14.5 - During the motion, the collar is acted upon by a...Ch. 14.5 - Determine the speed at which it slides off at B....Ch. 14.5 - If the block starts from rest when the attached...Ch. 14.5 - Prob. 5RPCh. 14.5 - The motor has an efficiency of = 0.76.Ch. 14.5 - If the collar is released from rest at A and...Ch. 14.5 - respectively. They are connected together by a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- If the 200 kg crate starts from rest and travels a distance of 10 m up the plane in 6s, determine the magnitude of force acting on the crate. The coefficient of kinetic friction between the crate and the ground is μ=0.4. 30° P 30°arrow_forwardIf the coefficient of kinetic friction between the150-lb crate and the ground is uk = 0.2, %3D determine the speed of the crate when t = 4 s. The crate starts from rest and is towed by %3D the 100-lb force. 100 lb 30°arrow_forwardThe 65-kg crate rests on a horizontal platform for which the coefficient of kinetic friction is µk = 0.28. the crate is subjected to a 500-N towing force.Determine the velocity of the crate in 3s starting from rest and the weight of the crate?arrow_forward
- 3. The 50-kg crate is applied by a force of P = 500 N up an incline starting from rest. Calculate the velocity of the crate after it travels 6 m up the incline if the incline has a coefficient of kinetic friction of uk 0.25. %3D 30° 30°arrow_forwardThe 8-kg block is moving with an initial speed of 5 m/s. If the coefficient of kinetic friction between the block and plane is μk=0.25, determine the compression in the spring when the block momentarily stops.arrow_forwarda 7.4 lb block has a speed of v-2.4 ft/s to the left when the force of F=3.6t^3 lb is applied to the right. determine the velocity and position of the block when t= 0.2 seconds. the coefficient of friction at the surface is uk= 0.2. provide both a free body diagram and a kinetic diagram. the force is being applied in the opposite direction to the velocity of the block.arrow_forward
- The 100 kg crate is subjected to forces F1= 800 N and F2= 1500 kN, as shown. If it is originally at rest, determine the distance it slides in order to attain a speed of v= 6 m/s. The coefficient of kinetic friction between the crate and the surface is Muk= 0.2arrow_forwardThe motor is towing the crate that has a mass of me = 1000 kg, and rests on the flat surface. It delivers an increasing horizontal pulling force of T= 500 Newton, where t is in second, to its cable at A, after 5 which the force is kept constant at 5000 N. The coefficients of static friction and kinetic friction are us =0.3 and uk =0.2, respectively, between the crate and the surface. Determine the velocity (m/s) of the crate when t₂ = 5s.arrow_forwardA small boat carrying people with a total weight of 362 Ibs slide down the incline whose dimensions are h=112 ft and d=117 ft. The coefficient of kinetic friction between the boat and the slide is 0.14. Determine the time it takes the boat to go from A to B, use 3 decimals for your answer. The boat starts sliding at A from rest. A darrow_forward
- 1. The coefficient of kinetic friction between the 40-kg crate and the slanting floor is μ = 0.3. if the angle a = 20°, what tension must the person exert on the rope to move the crate at constant speed? 10° Tarrow_forwardThe coefficient of static friction between the 200-kg crate and the flat bed of the truck is 0.3. Determine the shortest time for the truck to reach a speed of 60 km/h, starting from rest with constant acceleration, so that the crate does not slip.arrow_forwardThe crate, which has a mass of 245 kg is subjected to the action of the two forces. If it is originally at rest determine the distance it slides in order to attain a speed of 12 m/s. The coefficient of kinetic friction between the crate and the surface is 0.18 800 N 30° 4 1000 Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License