Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 47SDP
Review the sequence of operations in the production of the stepped pin shown in Fig. 14.14. If the conical-upsetting step is not performed, how would the final part be affected?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Correct and complete solution please don't copy
In a sheet metal forming press, the shape to be formed is hemispherical cup of radius 15 cm in 2mm thick mild
steel sheet. The force required to deform sheet is 8 kN. The forming hammer should approach job from a distance
of 30 cm. The production rate required is 240 components/hr.
Calculate and suggest the following specifications of the various hydraulic components used:
a. Hydraulic cylinder (bore & length);
b. Pump pressure and flow rate;
c. Electric motor HP considering 75% pump efficiency;
d. Reservoir size; and
e. Size of pump inlet and discharge tubing.
• In a sheet metal forming press the shape to be formed is
hemispherical cup of radius 15 cm in 2mm thick mild steel sheet.
The force required to deform sheet is 8 kN. The forming hammer
should approach job from a distance of 30 cm. The production rate
required is 240 components/hr. Calculate and suggest the
following specifications of the various hydraulic components used:
a) Hydraulic cylinder (bore & length)
b) Pump pressure and flow rate
c) Electric motor HP considering 75% pump efficiency
d) Reservoir size
e) Size of pump inlet and discharge tubing
Chapter 14 Solutions
Manufacturing Engineering & Technology
Ch. 14 - What is the difference between cold, warm, and hot...Ch. 14 - Explain the difference between open-die and...Ch. 14 - Explain the difference between fullering, edging,...Ch. 14 - What is flash? What is its function?Ch. 14 - Why is the intermediate shape of a part important...Ch. 14 - Describe the features of a typical forging die.Ch. 14 - Explain what is meant by load limited, energy...Ch. 14 - What type of parts can be produced by rotary...Ch. 14 - Why is hubbing an attractive alternative to...Ch. 14 - What is the difference between piercing and...
Ch. 14 - What is a hammer? What are the different kinds of...Ch. 14 - Why is there barreling in upsetting?Ch. 14 - What are the advantages and disadvantages of...Ch. 14 - Why are draft angles required in forging dies?Ch. 14 - Is a mandrel needed in swaging?Ch. 14 - Describe and explain the factors that influence...Ch. 14 - How can you tell whether a certain part is forged...Ch. 14 - Identify casting design rules, described in...Ch. 14 - Describe the factors involved in precision...Ch. 14 - Why is control of the volume of the blank...Ch. 14 - Why are there so many types of forging machines...Ch. 14 - What are the advantages and limitations of cogging...Ch. 14 - What are the advantages and limitations of using...Ch. 14 - Review Fig. 14.6e and explain why internal draft...Ch. 14 - Comment on your observations regarding the...Ch. 14 - Describe your observations concerning the control...Ch. 14 - Prob. 27QLPCh. 14 - Describe the difficulties involved in defining the...Ch. 14 - Describe the advantages of servo presses for...Ch. 14 - List the general recommendations you would make...Ch. 14 - Which would you recommend, (a) hot forging and...Ch. 14 - Take two solid, cylindrical specimens of equal...Ch. 14 - Calculate the room-temperature forging force for a...Ch. 14 - Using Eq. (14.2), estimate the forging force for...Ch. 14 - To what thickness can a solid cylinder of 1020...Ch. 14 - In Example 14.1, calculate the forging force,...Ch. 14 - Using Eq. (14.1), make a plot of the forging...Ch. 14 - How would you go about estimating the punch force...Ch. 14 - A mechanical press is powered by a 30-hp motor and...Ch. 14 - A solid cylindrical specimen, made of a perfectly...Ch. 14 - Devise an experimental method whereby you can...Ch. 14 - Assume that you represent the forging industry and...Ch. 14 - Figure P14.44 shows a round impression-die forging...Ch. 14 - Prob. 45SDPCh. 14 - Prob. 46SDPCh. 14 - Review the sequence of operations in the...Ch. 14 - Prob. 48SDPCh. 14 - Discuss the possible environmental concerns...Ch. 14 - List the advantages and disadvantages in using a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A billet 100 mm long and 40 mm diameter is to be extruded in a direct extrusion with final diameter of product 32 mm. The semi die angle is 60°. The work metal has a strength coefficient 500 Map, and strain hardening 0.2 use the Johnson formula with a=0.8 and b=1.45 to estimate the extrusion strain. Determine the pressure applied to the end of the billet as the ram moves forward.arrow_forwardExplain in your own words how the stress test (performance test) is applied to the patient turning apparatus shown in the figure, and guess how the expected result will be. The main part of the product consists of a polyurethane sponge. Stain-proof upholstery fabric will be used as the outer surface material. In addition, there are heating pads working with the logic of electric blankets in this apparatus, please answer by taking these into account when answering.arrow_forwardExplain the disadvantages of drum drying. Just type here your explanation, Thanks!arrow_forward
- Q#4: (b) Explain the disadvantages of Tube Drawing process in which mandrel is not used.arrow_forwardA piece with a height of 120 mm and a diameter of 75 mm can be increased to 80 mm in height by pile-forging.is reduced. The coefficient of friction between the workpiece and the mold is 0.13. Flow curve of the workpiece, 165It is defined by a strength coefficient of MPa and a hardening exponent of 0.24. force during operationCalculate at the moments given below and obtain the force-workpiece height graph(1) as soon as it reaches the yield point (yield strain = 0.002),(2) height h = 115 mm,(3) height h = 110 mm,(4) height h = 105mm,(5) height h = 100mm,(6) height h=95mm,(7) height h = 90 mm,(8) height h = 85mm,(9) height h = 80 mm,arrow_forwardQuestion 2. It is reduced to 80 mm with forging by stacking a part with a height of 120 mm and a diameter of 75 mm. The friction coefficient between the workpiece and the mold is 0.13. The flow curve of the workpiece is defined by a strength coefficient of 165 MPa and a ping-top of 0.24. Calculate the force during the process at the moments given below and obtain the force-workpiece height graph (1) as soon as it reaches the flow point (flow unit shape change = 0.002), (2) height h = 115 mm, (3) height h = 110 mm, (4) height h = 105 mm, (5) height h = 100 mm, (6) height h = 95 mm, (7) height h = 90 mm, (8) height h = 85 mm, (9) height h = 80 mm,arrow_forward
- Consider the extrusion of a cylindrical billet, and compute the following. Assume the starting billet to have a length of 0.3m and a diameter of 15cm. This is extruded into a cylindrical product that is 3cm in diameter and 7.5cm long. Neglecting the areas on the two ends, compute the ratio between the product surface area (wraparound cylinder) and the surface area of the starting billet. How would this ratio change if the product were a square with the same corss-sectional area as that of the 3cm diameter circle?arrow_forwardThe thickness of a sheet is reduced by rolling (without any change in width) using 600 mm diameter rolls. Neglect elastic deflection of the rolls and assume that the coefficient of friction at the roll-workpiece interface is 0.05. The sheet enters the rotating rolls unaided. If the initial sheet thickness is 2 mm, the minimum possible final thickness that can be produced by this process in a single pass isarrow_forward2. A 300 mm wide, 40 mm thick plate is reduced to 30 mm thickness in one pass by hot rolling. Roll diameter is 200 mm and entrance speed is 16 m/min. Material constants C and m at the process temperature are given as 50 MPa and 0.05 respectively. Determine: a. The minimum friction coefficient required to make this operation possible, b. Assuming that the minimum level of friction is maintained, calculate the exit velocity of the plate by considering there is no widening, c. Calculate the force and power requirement to apply the pass.arrow_forward
- An annealed 4340 steel strip of 300 mm width and 7 mm thickness is rolled to a thickness of 5 mm. The roll radius is 175 mm and rotates at 180 rpm. Calculate the roll force and the power required for the process.arrow_forwardA solid, cylindrical workpiece made of 5052-O aluminum that is 87 mm high and 65.878 mm radius and is to be reduced in height by 30% using forging. The coefficient of friction is 0.168. 5052-O yield stress is 98.21 MPa, strain hardening exponent is 0.128 , and strength coefficient is 193.74 MPa. Determine the forging force (MN) at the end of the stroke when the height has been reduced by 30%.arrow_forward* A cylindrical workpiece made of 1100-0 Aluminum that is 18 in high and 16 in in diameter and is to be reduced in height by 25% by open-die forging. Let the coefficient of friction be 0.15. K=20 mpa,n=0.35, Calculate the forging force.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License