Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 40QTP
A solid cylindrical specimen, made of a perfectly plastic material, is being upset between flat dies with no friction. The process is being carried out by a falling weight, as in a drop hammer. The downward velocity of the hammer is at a maximum when it first contacts the workpiece, and becomes zero when the hammer stops at a certain height of the specimen. Establish quantitative relationships between workpiece height and velocity, and make a qualitative sketch of the velocity profile of the hammer. (Hint: The loss in the kinetic energy of the hammer is the plastic work of deformation; thus, there is a direct relationship between workpiece height and velocity.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure below shows a symmetric plane-strain upsetting process. The process may also be thought of as a form of side extrusion. Observations show that the deformation is confined to two shear planes, each one being analogous to that seen in plane-strain cutting. You may assume that there is no friction between the work material and the tool/die walls; the uniaxial yield strength of the material is σy and is independent of strain rate and temperature, and the material behaves as a rigid plastic solid.
a) Calculate the pressure (p) required for the upsetting process in terms of σy.
b) If friction existed at the die walls and the frictional work (energy) dissipation was 30% of the energy required for shape change alone (part (a) above), then what would be the pressure (p)?
A spool of wire has a starting diameter of 2.5 mm. It is drawn through a die with an opening that is 2.1 mm at a speed of 0.3 m/s. The worked metal has a strength coefficient of 450 MPa and a strain-hardening coefficient of 0.26. Assume the drawing is performed at room temperature and that the frictional and redundant work together constitute 35% of the ideal work of deformation.
Calculate the power required to carry out the operation
Circles of a metal are being punched that will be later stamped into coins. The metal has a shear strength of 32,575 psi. The sheets are 2.1 mm thick. The coin blanks are to be 16.5 mm in diameter. If sheet of metal is expected to produce 50 coin blanks, how much force is required to punch the sheets?
Chapter 14 Solutions
Manufacturing Engineering & Technology
Ch. 14 - What is the difference between cold, warm, and hot...Ch. 14 - Explain the difference between open-die and...Ch. 14 - Explain the difference between fullering, edging,...Ch. 14 - What is flash? What is its function?Ch. 14 - Why is the intermediate shape of a part important...Ch. 14 - Describe the features of a typical forging die.Ch. 14 - Explain what is meant by load limited, energy...Ch. 14 - What type of parts can be produced by rotary...Ch. 14 - Why is hubbing an attractive alternative to...Ch. 14 - What is the difference between piercing and...
Ch. 14 - What is a hammer? What are the different kinds of...Ch. 14 - Why is there barreling in upsetting?Ch. 14 - What are the advantages and disadvantages of...Ch. 14 - Why are draft angles required in forging dies?Ch. 14 - Is a mandrel needed in swaging?Ch. 14 - Describe and explain the factors that influence...Ch. 14 - How can you tell whether a certain part is forged...Ch. 14 - Identify casting design rules, described in...Ch. 14 - Describe the factors involved in precision...Ch. 14 - Why is control of the volume of the blank...Ch. 14 - Why are there so many types of forging machines...Ch. 14 - What are the advantages and limitations of cogging...Ch. 14 - What are the advantages and limitations of using...Ch. 14 - Review Fig. 14.6e and explain why internal draft...Ch. 14 - Comment on your observations regarding the...Ch. 14 - Describe your observations concerning the control...Ch. 14 - Prob. 27QLPCh. 14 - Describe the difficulties involved in defining the...Ch. 14 - Describe the advantages of servo presses for...Ch. 14 - List the general recommendations you would make...Ch. 14 - Which would you recommend, (a) hot forging and...Ch. 14 - Take two solid, cylindrical specimens of equal...Ch. 14 - Calculate the room-temperature forging force for a...Ch. 14 - Using Eq. (14.2), estimate the forging force for...Ch. 14 - To what thickness can a solid cylinder of 1020...Ch. 14 - In Example 14.1, calculate the forging force,...Ch. 14 - Using Eq. (14.1), make a plot of the forging...Ch. 14 - How would you go about estimating the punch force...Ch. 14 - A mechanical press is powered by a 30-hp motor and...Ch. 14 - A solid cylindrical specimen, made of a perfectly...Ch. 14 - Devise an experimental method whereby you can...Ch. 14 - Assume that you represent the forging industry and...Ch. 14 - Figure P14.44 shows a round impression-die forging...Ch. 14 - Prob. 45SDPCh. 14 - Prob. 46SDPCh. 14 - Review the sequence of operations in the...Ch. 14 - Prob. 48SDPCh. 14 - Discuss the possible environmental concerns...Ch. 14 - List the advantages and disadvantages in using a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5) A steel specimen of rectangular cross section with 120 mm width, 180 mm thickness and 90 mm height was upset at room temperature by open-die forging to a height of 55 mm. If the strength coefficient and strain hardening exponent of this material were 1015 MPa and 0.17 respectively, the coefficient of friction is 0.2, and assuming that the thickness would not change during forging; determine the required upsetting force at the end of stroke.arrow_forwardA compound die is used to blank and punch a large washer out of 6061ST aluminum alloy sheet stock 3.2 mm thick. The outside diameter of the washer is 25.0 mm, and the inside diameter is 12.0 mm. Determine (a) the punch and die sizes for the blanking and punching operations, (b) the force required to perform the blanking and punching operation under the following conditions: (a) blanking and punching occur simultaneously and (b) the punches are staggered so that punching occurs first, then blanking. The aluminum has a tensile strength = 350 MPa.arrow_forwardIn a rolling mill, the rollers can exert a pressure of 219 MPa on the sheet being rolled. If the friction coefficient between the roller and the sheet metal is 0.35 and the flow stress of the steel being rolled is 120 MPa, what diameter rolls would reduce the thickness of 2mm thick sheet by 25% in a single pass?arrow_forward
- A 42mm thick low carbon steel plate is reduced to 34mm in one rolling pass. At the same time that the thickness is reduced, the plate is widened by 4%. The elastic limit of the steel plate is 174MPa and its resistance is 290MPa. The input speed of the plate is 15m/min. The radius of the cylinder is 52.8mm and the rotation speed is 49 revolutions per minute. Determine: a) The minimum coefficient of friction that will make this rolling operation possible. b) The output speed of the plate c) Slide forwardarrow_forwardA 10 mm thick plate is rolled to 7 mm thick in a rolling mill using 1000 mm diameter rigid rolls. The neutral point is located at an angle of 0.3 times the bite angle from the exit. What will be the thickness of the plate at the neutral point.arrow_forwardWhat is the force required to punch a 20-mm diameter hole in a plate that is 25 mm thick? Shear strength of the plate is 350 MN/m2.arrow_forward
- A plate that is 260 mm wide and 27 mm thick is to be reduced in a single pass in a two‑high rolling mill to a thickness of 22 mm. The roll has a radius = 510 mm, and its speed = 25 m/min. The work material has a strength coefficient = 235 MPa and a strain hardening exponent = 0.21. Determine (a) roll force, (b) roll torque, and (c) power required to accomplish this operationarrow_forwardA plate that is 250 mm wide and 25 mm thick is to be reduced in a single pass in a two-high rolling mill to a thickness of 20 mm. The roll has a radius = 500 mm, and its speed = 30 m/min. The work material has a strength coefficient = 240 MPa and a strain hardening exponent = 0.2. Determine (a)roll force, (b) roll torque, and (c) power required to accomplish this .operation 1365 N & 529865 N-m & 452 W O 500250 N & 12005 N-m & 2456 W O 71254632 N & 135674 N-m & 12053 W O 1851829 N & 46296 N-m & 92,591 W Oarrow_forwardShow that the true strain rate in extruding a round billet of radius r, as a function of distance x from the entry of a conical die can be given as: 2Vorštana (ro-xtana) where; Vo: ram velocityarrow_forward
- In a wire drawing operation, diameter of a steel wire is reduced from 10 mm to 8 mm. The mean flow stress of the material is 400 MPa.The ideal force required for drawing (ignoring friction and redundant work) is....arrow_forwardA blank workpiece with 200 mm diameter is to be blanked from 3.2- mm-thick half-hard stainless steel (ultimate tensile strength of 650 MPa). Find (a) the diameters of blank die and punch, and (b) blanking force.arrow_forwardPlot the force vs. reduction in height curve in open-die forging of a cylindrical, annealed copper specimen 45 mm high and 25 mm in diameter up to a reduction of 70%. µ = 0.35. Use average-pressure formulas.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License