Chemical Principles
8th Edition
ISBN: 9781305581982
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 28E
Many important compounds in the chemical industry are derivatives of ethylene
Complete the Lewis structures for these molecules, showing all lone pairs. Give approximate values for bond angles
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Many important compounds in the chemical industry are derivatives of ethylene(C2H4). two of them are acrylonitrile and methyl methacrylate.AcrylonitrileMethyl methacrylateComplete the Lewis structures, showing all lone pairs. Give approximate values forbond angles a through f Give the hybridization of all carbon atoms. In acrylonitrile,how many of the atoms in the molecule must lie in the same plane? How many σbonds and how many π bonds are there in methyl methacrylate and acrylonitrile?
Draw the Lewis dot structure for acetic acid (HC2H3O2, CH3COOH). Determine the optimum formal charge structure. Determine the VSEPR domain and molecular geometries for the central carbon atoms. Determine the hybridization of the carbons and oxygens. Determine the polarity of the molecule; show the polarity arrows and partial charges for the molecule. (Electronegativities: H 2.1,C 2.5, O 3.5)
Yeni Metin Belgesi - Not Defteri
Dosya Düzen Biçim Görünüm
Yardım
For acetaldehyde (CH3CHO) write the
Lewis structure. Write the hybridization
and geometry of each carbon. Draw its
3D structure and write the bond angles
(approximately).
Chapter 14 Solutions
Chemical Principles
Ch. 14 - Prob. 1DQCh. 14 - Prob. 2DQCh. 14 - Prob. 3DQCh. 14 - Prob. 4DQCh. 14 - Prob. 5DQCh. 14 - Prob. 6DQCh. 14 - Compare and contrast the MO model with the LE...Ch. 14 - Prob. 8DQCh. 14 - Prob. 9ECh. 14 - Prob. 10E
Ch. 14 - Prob. 11ECh. 14 - Prob. 12ECh. 14 - Prob. 13ECh. 14 - Use the localized electron model to describe the...Ch. 14 - Prob. 15ECh. 14 - Use the LE model to describe the bonding in H2CO...Ch. 14 - Prob. 17ECh. 14 - The space-filling models of hydrogen cyanide and...Ch. 14 - Prob. 19ECh. 14 - Prob. 20ECh. 14 - Prob. 21ECh. 14 - Indigo is the dye used in coloring blue jeans. The...Ch. 14 - Prob. 23ECh. 14 - Prob. 24ECh. 14 - Why must all six atoms in C2H4 be in the same...Ch. 14 - The allene molecule has the following Lewis...Ch. 14 - Biacetyl and acetoin are added to margarine to...Ch. 14 - Many important compounds in the chemical industry...Ch. 14 - Prob. 29ECh. 14 - Hot and spicy foods contain molecules that...Ch. 14 - Two molecules used in the polymer industry are...Ch. 14 - Prob. 32ECh. 14 - The three most stable oxides of carbon are carbon...Ch. 14 - Prob. 34ECh. 14 - Prob. 35ECh. 14 - What are the relationships among bond order, bond...Ch. 14 - Prob. 37ECh. 14 - A Lewis structure obeying the octet rule can be...Ch. 14 - Prob. 39ECh. 14 - Why does the molecular orbital model do a better...Ch. 14 - Prob. 41ECh. 14 - Prob. 42ECh. 14 - Prob. 43ECh. 14 - In which of the following diatomic molecules would...Ch. 14 - Prob. 45ECh. 14 - Using the molecular orbital model to describe the...Ch. 14 - The transport of O2 in the blood is carried out by...Ch. 14 - Prob. 48ECh. 14 - Prob. 49ECh. 14 - Consider the following electron configuration:...Ch. 14 - Prob. 51ECh. 14 - Using an MO energy-level diagram, would you expect...Ch. 14 - Use Figs.14.45 and 14.46 to answer the following...Ch. 14 - The diatomic molecule OH exists in the gas phase....Ch. 14 - Prob. 55ECh. 14 - Describe the bonding in the O3 molecule and the...Ch. 14 - Prob. 57ECh. 14 - The space-filling model for benzoic acid is shown...Ch. 14 - Prob. 59ECh. 14 - Prob. 60ECh. 14 - The microwave spectrum of 12C16O shows that the...Ch. 14 - Prob. 62ECh. 14 - Prob. 63ECh. 14 - Prob. 64ECh. 14 - Draw the Lewis structures, predict the molecular...Ch. 14 - Prob. 66AECh. 14 - Prob. 67AECh. 14 - Prob. 68AECh. 14 - Prob. 69AECh. 14 - Prob. 70AECh. 14 - Prob. 71AECh. 14 - Prob. 72AECh. 14 - Prob. 73AECh. 14 - Vitamin B6 is an organic compound whose deficiency...Ch. 14 - Prob. 75AECh. 14 - Prob. 76AECh. 14 - Prob. 77AECh. 14 - Prob. 78AECh. 14 - Prob. 79AECh. 14 - Draw the Lewis structures for TeCl4 , ICl5 , PCl5...Ch. 14 - Prob. 81AECh. 14 - Pelargondin is the molecule responsible for the...Ch. 14 - Prob. 83AECh. 14 - Prob. 84AECh. 14 - Prob. 85AECh. 14 - Prob. 86AECh. 14 - Given that the ionization energy of F2 is...Ch. 14 - Bond energy has been defined in the text as the...Ch. 14 - a.A flask containing gaseous N2 is irradiated with...Ch. 14 - Use the MO model to determine which of the...Ch. 14 - Cholesterol (C27H46O) has the following structure:...Ch. 14 - Arrange the following from lowest to highest...Ch. 14 - Carbon monoxide (CO) forms bonds to a variety of...Ch. 14 - Prob. 94CPCh. 14 - In Exercise71 in Chapter13 , the Lewis structures...Ch. 14 - Prob. 96CPCh. 14 - Prob. 97CPCh. 14 - Prob. 98MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Aspirin, or acetylsalicylic acid, has the formula C9H8O4 and the skeleton structure (a) Complete the Lewis structure and give the number of bonds and bonds in aspirin. (b) What is the hybridization about the CO2H carbon atom (colored blue)? (c) What is the hybridization about the carbon atom in the benzene-like ring that is bonded to an oxygen atom (colored red)? Also, what is the hybridization of the oxygen atom bonded to this carbon atom?arrow_forwardConsider the polyatomic ion IO65-. How many pairs of electrons are around the central iodine atom? What is its hybridization? Describe the geometry of the ion.arrow_forwardThe sulfamate ion, H2NSO3, can be thought of as having been formed from the amide ion, NH2, and sulphur trioxide, SO3. (a) What are the electron-pair and molecular geometries or the amide ion and or SO3? What are the hybridizations of the N and S atoms, respectively? (b) Sketch a structure for the sulfamate ion, and estimate the bond angles. (c) What changes in hybridization do you expect for N and S in the course of the reaction NH2 + SO3 H2NSO3? (d) Is SO3 the donor of an electron pair or the acceptor of an electron pair in the reaction with amide ion? Does the electrostatic potential map shown below confirm your prediction?arrow_forward
- Formamide, HC(O)NH2, is prepared at high pressures from carbon monoxide and ammonia, and serves as an industrial solvent (the parentheses around the O indicate that it is bonded only to the carbon atom and that the carbon atom is also bonded to the H and the N atoms). Two resonance forms (one with formal charges) can be written for formamide. Write both resonance structures, and predict the bond angles about the carbon and nitrogen atoms for each resonance form. Are they the same? Describe how the experimental determination of the HNH bond angle could be used to indicate which resonance form is more important.arrow_forwardThe structure of amphetamine, a stimulant, is shown below. (Replacing one H atom on the NH2, or amino, group with CH3 gives methamphetamine a particularly dangerous drug commonly known as speed.) (a) What are the hybrid orbitals used by the C atoms of the C6 ring. by the C atoms of the side chain, and by the N atom? (b) Give approximate values for the bond angles A, B, and C. (c) How many bonds and bonds are in the molerule? (d) Is the molecule polar or nonpolar? (e) Amphetamine reacts readily with a proton (H+) in aqueous solution. Where does this proton attach to the molecule? Explain how the electrostatic potential map predicts this site of protonation.arrow_forwardGive the hybridization of each central atom in the following molecules. (a) cyclohexene (b) phosgene, Cl2CO (c) glycine, H2NC(1)H2C(2)OOH (Note: Numbers in parentheses label each carbon atom.)arrow_forward
- Calcium cyanamide, CaNCN, is used both to kill weeds and as a fertilizer. Give the Lewis structure of the NCN2 ion and the bonded-atom lone-pair arrangement and hybridization of the carbon atom.arrow_forwardThe hybridization of the two carbon atoms differs in an acetic acid, CH3COOH, molecule. (a) Designate the correct hybridization for each carbon atom in this molecule. (b) What is the approximate bond angle around each carbon?arrow_forwardMinoxidil (C9H15N15O) is a compound produced by the Pharmacia Upjohn Company that has been approved as a treatment for some types of male pattern baldness. Note that in such shorthand ring structures, each point where lines meet is a carbon atom and that the hydrogen atoms bonded to the carbon atoms in the rings have been omitted. There will be four bonds to each carbon atom. a. Give the hybridization of the five nitrogen atoms in minoxidil. b. Give the hybridization of each of the nine carbon atoms in minoxidil. c. Give the approximate values for the bond angles marked a, b, c, d, e, and f. d. Including all the hydrogen atoms, how many bonds exist in minoxidil? e. How many bonds exist in minoxidil?arrow_forward
- Draw the Lewis structure for 1, 1-dimethylhydrazine [(CH3)2NNH2, a compound used as a rocket fuel]. What: is the hybridization for the two nitrogen atoms in this molecule? What orbitals overlap to form the bond between the nitrogen atoms?arrow_forwardUse the VSEPR model to predict the bond angles around each central atom in the following Lewis structures (benzene rings are frequently pictured as hexagons, without the letter for the carbon atom at each vertex). Note that the drawings do not necessarily depict the bond angles correctly.arrow_forwardCinnamaldehyde ocaus naturally in cinnamon oil. (a) What is the most polar bond in the molecule? (b) How many bonds and how many bonds are there? (c) Is cis-trans isomerism possible? If so, draw the isomers of the molecule. (d) Give the hybridization of the C atoms in the molecule. (e) What are the values of the bond angles 1, 2, and 3 ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY