OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
11th Edition
ISBN: 9781305673939
Author: Darrell Ebbing; Steven D. Gammon
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14, Problem 14.21QP
A mixture initially consisting of 2 mol CO and 2 mol H2 comes to equilibrium with methanol, CH3OH, as the product:
At equilibrium, the mixture will contain which of the following?
- a less than 1 mol CH3OH
- b 1 mol CH3OH
- c more than 1 mol CH3OH but less than 2 mol
- d 2 mol CH3OH
- e more than 2 mol CH3OH
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
Ch. 14.1 - Synthesis gas (a mixture of CO and H2) is...Ch. 14.1 - Two substances A and B react to produce substance...Ch. 14.2 - a. Write the equilibrium-constant expression Kc...Ch. 14.2 - When 1.00 mol each of carbon monoxide and water...Ch. 14.2 - Hydrogen sulfide, a colorless gas with a foul...Ch. 14.2 - Phosphorus pentachloride dissociates on heating:...Ch. 14.2 - Consider the following hypothetical reactions. The...Ch. 14.3 - The Mond process for purifying nickel involves the...Ch. 14.4 - The equilibrium constant Kc for the reaction...Ch. 14.5 - A 10.0-L vessel contains 0.0015 mol CO2 and 0.10...
Ch. 14.5 - Carbon monoxide and hydrogen react in the presence...Ch. 14.6 - Phosphorus pentachloride gives an equilibrium...Ch. 14.6 - What is the equilibrium composition of a reaction...Ch. 14.6 - Phosphorus pentachloride, PCl5, decomposes when...Ch. 14.6 - Prob. 14.4CCCh. 14.7 - Prob. 14.12ECh. 14.8 - Can you increase the amount of product in each of...Ch. 14.8 - Prob. 14.14ECh. 14.8 - Prob. 14.5CCCh. 14.8 - Prob. 14.15ECh. 14 - Consider the reaction N2O4(g)2NO2(g). Draw a graph...Ch. 14 - When 1.0 mol each of H2(g) and I2(g) are mixed at...Ch. 14 - Prob. 14.3QPCh. 14 - Obtain the equilibrium constant for the reaction...Ch. 14 - Which of the following reactions involve...Ch. 14 - Prob. 14.6QPCh. 14 - Prob. 14.7QPCh. 14 - Prob. 14.8QPCh. 14 - Prob. 14.9QPCh. 14 - Prob. 14.10QPCh. 14 - How is it possible for a catalyst to give products...Ch. 14 - Prob. 14.12QPCh. 14 - A chemist put 1.18 mol of substance A and 2.85 mol...Ch. 14 - The reaction 3A(g)+B(s)2C(aq)+D(aq) occurs at 25C...Ch. 14 - A graduate student places 0.272 mol of PCl3(g) and...Ch. 14 - An experimenter places the following...Ch. 14 - Chemical Equilibrium I Part 1: You run the...Ch. 14 - Chemical Equilibrium II Magnesium hydroxide....Ch. 14 - During an experiment with the Haber process, a...Ch. 14 - Suppose liquid water and water vapor exist in...Ch. 14 - A mixture initially consisting of 2 mol CO and 2...Ch. 14 - Prob. 14.22QPCh. 14 - For the reaction 2HI(g)H2(g)+I2(g) carried out at...Ch. 14 - An experimenter introduces 4.0 mol of gas A into a...Ch. 14 - The following reaction is earned out at 500 K in a...Ch. 14 - For the endothermic reaction AB(g)A(g)+B(g), the...Ch. 14 - Prob. 14.27QPCh. 14 - Prob. 14.28QPCh. 14 - A 2.500-mol sample of phosphorus pentachloride,...Ch. 14 - You place 4.00 mol of dinitrogen trioxide, N2O3,...Ch. 14 - You place 0.600 mol of nitrogen, N2, and 1.800 mol...Ch. 14 - Nitrogen monoxide, NO, reacts with bromine, Br2,...Ch. 14 - In the contact process, sulfuric acid is...Ch. 14 - Methanol, CH3OH, formerly known as wood alcohol,...Ch. 14 - Write equilibrium-constant expressions Kc for each...Ch. 14 - Write equilibrium-constant expressions Kc for each...Ch. 14 - The equilibrium-constant expression for a gas...Ch. 14 - Prob. 14.38QPCh. 14 - The equilibrium-constant expression for a reaction...Ch. 14 - Prob. 14.40QPCh. 14 - The equilibrium constant Kc, for the equation...Ch. 14 - The equilibrium constant Kc for the equation...Ch. 14 - A 13.0-L reaction vessel at 499C contained...Ch. 14 - A 4.00-L vessel contained 0.0148 mol of phosphorus...Ch. 14 - Obtain the value of Kc for the following reaction...Ch. 14 - Obtain the value of Kc for the following reaction...Ch. 14 - At 60C, 3.76 mol of nitrosyl bromide, NOBr, placed...Ch. 14 - A 2 00-mol sample of nitrogen dioxide was placed...Ch. 14 - Write equilibrium-constant expressions Kp for each...Ch. 14 - Write equilibrium-constant expressions Kp for each...Ch. 14 - The value of Kc for the following reaction at 298C...Ch. 14 - The equilibrium constant Kc equals 0.0952 for the...Ch. 14 - The reaction SO2(g)+12O2(g)SO3(g) has Kp equal to...Ch. 14 - Fluorine, F2, dissociates into atoms on heating....Ch. 14 - Write the expression for the equilibrium constant...Ch. 14 - For each of the following equations, give the...Ch. 14 - On the basis of the value of Kc decide whether or...Ch. 14 - Would either of the following reactions go almost...Ch. 14 - Hydrogen fluoride decomposes according to the...Ch. 14 - Suppose sulfur dioxide reacts with oxygen at 25C....Ch. 14 - The following reaction has an equilibrium constant...Ch. 14 - The following reaction has an equilibrium constant...Ch. 14 - Methanol, CH3OH, is manufactured industrially by...Ch. 14 - Sulfur trioxide, used to manufacture sulfuric...Ch. 14 - Phosgene, COCl2, used in the manufacture of...Ch. 14 - Nitrogen monoxide, NO, is formed in automobile...Ch. 14 - Iodine and bromine react to give iodine...Ch. 14 - Initially a mixture contains 0.850 mol each of N2...Ch. 14 - Calculate the composition of the gaseous mixture...Ch. 14 - The equilibrium constant Kc, for the reaction...Ch. 14 - Suppose 1.000 mol CO and 3.000 mol H2 are put in a...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - Consider the equilibrium FeO(s)+CO(g)Fe(s)+CO2(g)...Ch. 14 - a Predict the direction of reaction when chlorine...Ch. 14 - What would you expect to be the effect of an...Ch. 14 - Indicate whether either an increase or a decrease...Ch. 14 - Methanol is prepared industrially from synthesis...Ch. 14 - One way of preparing hydrogen is by the...Ch. 14 - Use thermochemical data (Appendix C) to decide...Ch. 14 - Use thermochemical data (Appendix C) to decide...Ch. 14 - What would you expect to be the general...Ch. 14 - Predict the general temperature and pressure...Ch. 14 - A mixture of carbon monoxide, hydrogen, and...Ch. 14 - Prob. 14.84QPCh. 14 - At 850C and 1.000 atm pressure, a gaseous mixture...Ch. 14 - An equilibrium mixture of dinitrogen tetroxide,...Ch. 14 - A 2.50-L vessel contains 1.75 mol N2, 1.75 mol H2,...Ch. 14 - A vessel originally contained 0.0200 mol iodine...Ch. 14 - A gaseous mixture containing 1.00 mol each of CO,...Ch. 14 - A 2.0-L reaction flask initially contains 0.010...Ch. 14 - Hydrogen bromide decomposes when heated according...Ch. 14 - Iodine monobromide, IBr, occurs as brownish-black...Ch. 14 - Phosgene, COCl2, is a toxic gas used in the...Ch. 14 - Dinitrogen tetroxide, N2O4, is a colorless gas...Ch. 14 - Prob. 14.95QPCh. 14 - Prob. 14.96QPCh. 14 - The amount of nitrogen dioxide formed by...Ch. 14 - The equilibrium constant Kc for the synthesis of...Ch. 14 - For the reaction N2(g)+3H2(g)2NH3(g) show that Kc...Ch. 14 - Prob. 14.100QPCh. 14 - At high temperatures, a dynamic equilibrium exists...Ch. 14 - At high temperatures, a dynamic equilibrium exists...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - At 25C in a closed system, ammonium hydrogen...Ch. 14 - At moderately high temperatures, SbCl5 decomposes...Ch. 14 - The following reaction is important in the...Ch. 14 - Sulfuryl chloride is used in organic chemistry as...Ch. 14 - Phosgene was used as a poisonous gas in World War...Ch. 14 - Gaseous acetic acid molecules have a certain...Ch. 14 - Gaseous acetic acid molecules have a certain...Ch. 14 - When 0.112 mol of NO and 18.22 g of bromine are...Ch. 14 - Prob. 14.112QPCh. 14 - Prob. 14.113QPCh. 14 - Prob. 14.114QPCh. 14 - A chemist placed a mixture of CO2(g) and CF4(g)...Ch. 14 - Prob. 14.116QPCh. 14 - Prob. 14.117QPCh. 14 - The equilibrium constant Kc for the equation...Ch. 14 - Consider the reaction N2O4(g)2NO2(g). Would you...Ch. 14 - A researcher put 0.400 mol PCl3 and 0.600 mol Cl2...Ch. 14 - Ammonium hydrogen sulfide. NH4HS, is unstable at...Ch. 14 - A chemist wants to prepare phosgene, COCl2, by the...Ch. 14 - Prob. 14.123QPCh. 14 - Prob. 14.124QPCh. 14 - Prob. 14.125QPCh. 14 - A container with a volume of 1.500 L was evacuated...Ch. 14 - Prob. 14.127QPCh. 14 - Prob. 14.128QPCh. 14 - Prob. 14.129QPCh. 14 - Sulfur dioxide reacts with oxygen to produce...Ch. 14 - Molecular bromine, Br2, dissociates at elevated...Ch. 14 - Consider the production of ammonia from its...Ch. 14 - A mixture of 0.0565 mol phosphorus pentachloride,...Ch. 14 - Calcium carbonate, CaCO3, decomposes when heated...Ch. 14 - The following equilibrium was studied by analyzing...Ch. 14 - Prob. 14.136QPCh. 14 - Phosphorus pentachloride, PCl5, decomposes on...Ch. 14 - Antimony(V) chloride. SbCl5, decomposes on heating...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- For the reactionH2(g)+I2(g)2HI(g), consider two possibilities: (a) you mix 0.5 mole of each reactant. allow the system to come to equilibrium, and then add another mole of H2 and allow the system to reach equilibrium again. or (b) you mix 1.5 moles of H2 and 0.5 mole of I2 and allow the system to reach equilibrium. Will the final equilibrium mixture be different for the two procedures? Explain.arrow_forwardWhat is Le Chteliers principle? Consider the reaction 2NOCI(g)2NO(g)+Cl2(g) If this reaction is at equilibrium. what happens when the following changes occur? a. NOCI(g) is added. b. NO(g) is added. c. NOCI(g) is removed. d. Cl2(g) is removed. e. The container volume is decreased. For each of these changes, what happens to the value of K for the reaction as equilibrium is reached again? Give an example of a reaction for which the addition or removal of one of the reactants or products has no effect on the equilibrium position. In general, how will the equilibrium position of a gas-phase reaction be affected if the volume of the reaction vessel changes? Are there reactions that will not have their equilibria shifted by a change in volume? Explain. Why does changing the pressure in a rigid container by adding an inert gas not shift the equilibrium position for a gas-phase reaction?arrow_forwardDecomposition of ammonium dichromate is shown in the designated series of photos. In a closed container this process reaches an equilibrium state. Write a balanced chemical equation for the equilibrium reaction. How is the equilibrium affected if more ammonium dichromate is added to the equilibrium system? more water vapor is added? more chromium(III) oxide is added? Decomposition of ammonium dichromate, for Question 4. Decomposition of (NH4)2Cr2O7. Orange, solid (NH4)2Cr2O7 (a) can be ignited by lighting a wick (b), which initiates decomposition (c) forming Cr2O3, the dark green solid in part (d), N2 gas, and water vapor. Energy is transferred to the surroundings by the process.arrow_forward
- Explain that equilibrium is dynamic, and that at equilibrium the forward and backward reaction rates are equal.arrow_forwardCarbon tetrachloride can be produced by the following reaction: CS2(g) + 3 Cl2(g) S2Cl2(g) + CCl4(g) Suppose 0.12 mol of CS2 and 0.36 mol of Cl2 are placed in a 10.0-L flask. After equilibrium has been achieved, the mixture contains 0.090 mol CCl4. Calculate Kc.arrow_forwardConsider the system 4NH3(g)+3O2(g)2N2(g)+6H2O(l)H=1530.4kJ (a) How will the concentration of ammonia at equilibrium be affected by (1) removing O2(g)? (2) adding N2(g)? (3) adding water? (4) expanding the container? (5) increasing the temperature? (b) Which of the above factors will increase the value of K? Which will decrease it?arrow_forward
- At room temperature, the equilibrium constant Kc for the reaction 2 NO(g) ⇌ N2(g) + O2(g) is 1.4 × 1030. Is this reaction product-favored or reactant-favored? Explain your answer. In the atmosphere at room temperature the concentration of N2 is 0.33 mol/L, and the concentration of O2 is about 25% of that value. Calculate the equilibrium concentration of NO in the atmosphere produced by the reaction of N2 and O2. How does this affect your answer to Question 11?arrow_forwardThe value of the equilibrium constant, K, is dependent on which of the following? (There may be more than one answer.) a. the initial concentrations of the reactants b. the initial concentrations of the products c. the temperature of the system d. the nature of the reactants and products Explain.arrow_forwardSuppose a reaction has the equilibrium constant K = 1.3 108. What does the magnitude of this constant tell you about the relative concentrations of products and reactants that will be present once equilibrium is reached? Is this reaction likely to be a good source of the products?arrow_forward
- Consider the following equilibrium: COBr2(g) CO(g) + Br2(g)Kc = 0.190 at 73 C (a) A 0.50 mol sample of COBr2 is transferred to a 9.50-L flask and heated until equilibrium is attained. Calculate the equilibrium concentrations of each species. (b) The volume of the container is decreased to 4.5 L and the system allowed to return to equilibrium. Calculate the new equilibrium concentrations. (Hint: The calculation will be easier if you view this as a new problem with 0.5 mol of COBr2 transferred to a 4.5-L flask.) (c) What is the effect of decreasing the container volume from 9.50 L to 4.50 L?arrow_forwardBecause calcium carbonate is a sink for CO32- in a lake, the student in Exercise 12.39 decides to go a step further and examine the equilibrium between carbonate ion and CaCOj. The reaction is Ca2+(aq) + COj2_(aq) ** CaCO,(s) The equilibrium constant for this reaction is 2.1 X 10*. If the initial calcium ion concentration is 0.02 AI and the carbonate concentration is 0.03 AI, what are the equilibrium concentrations of the ions? A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H2COj(aq) H+(aq) + HCO}‘(aq) K = 4.4 X 10"7 She starts with 0.1000 AI carbonic acid. What are the concentrations of all species at equilibrium?arrow_forwardDuring an experiment with the Haber process, a researcher put 1 mol N2 and 1 mol H2 into a reaction vessel to observe the equilibrium formation of ammonia, NH3. N2(g)+3H2(g)2NH3(g) When these reactants come to equilibrium, assume that x mol H2 react. How many moles of ammonia form?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY