Phosphorus pentachloride gives an equilibrium mixture of PCl5 PCl3, and Cl2 when heated.
A 1.00-L vessel contains an unknown amount of PCl5 and 0.020 mol each of PCl3 and Cl2 at equilibrium at 250°C. How many moles of PCl5 are in the vessel if Kc for this reaction is 0.0415 at 250°C?
Trending nowThis is a popular solution!
Chapter 14 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
- A solution is prepared by dissolving 0.050 mol of diiodocyclohexane, C5H10I2, in the solvent CCl4.The total solution volume is 1.00 L When the reaction C6H10I2 C6H10 + I2 has come to equilibrium at 35 C, the concentration of I2 is 0.035 mol/L. (a) What are the concentrations of C6H10I2 and C6H10 at equilibrium? (b) Calculate Kc, the equilibrium constant.arrow_forwardFor the reactionH2(g)+I2(g)2HI(g), consider two possibilities: (a) you mix 0.5 mole of each reactant. allow the system to come to equilibrium, and then add another mole of H2 and allow the system to reach equilibrium again. or (b) you mix 1.5 moles of H2 and 0.5 mole of I2 and allow the system to reach equilibrium. Will the final equilibrium mixture be different for the two procedures? Explain.arrow_forwardMustard gas, used in chemical warfare in World War I, has been found to be an effective agent in the chemotherapy of Hodgkin's disease. It can be produced according to the following reaction: SCl2(g)+2C2H4(g)S(CH2CH2Cl)2(g)An evacuated 5.0-1- flask at 20.0C is filled with 0.258 mol SCl2 and 0.592 mol C2H4. After equilibrium is established, 0.0349 mol mustard gas is present. (a) What is the partial pressure of each gas at equilibrium? (b) What is K at 20.0C?arrow_forward
- Consider the following equilibrium: COBr2(g) CO(g) + Br2(g)Kc = 0.190 at 73 C (a) A 0.50 mol sample of COBr2 is transferred to a 9.50-L flask and heated until equilibrium is attained. Calculate the equilibrium concentrations of each species. (b) The volume of the container is decreased to 4.5 L and the system allowed to return to equilibrium. Calculate the new equilibrium concentrations. (Hint: The calculation will be easier if you view this as a new problem with 0.5 mol of COBr2 transferred to a 4.5-L flask.) (c) What is the effect of decreasing the container volume from 9.50 L to 4.50 L?arrow_forwardConsider 0.200 mol phosphorus pentachloride sealed in a 2.0-L container at 620 K. The equilibrium constant, Kc, is 0.60 for PCl5(g) PCl3(g) + Cl2(g) Calculate the concentrations of all species after equilibrium has been reached.arrow_forwardA chemist put 1.18 mol of substance A and 2.85 mol of substance B into a 10.0-L flask, which she then closed. A and B react by the following equation: A(g)+2B(g)3C(g)+D(g) She found that the equilibrium mixture at 25C contained 0.376 mol of D. How many moles of B are in the flask at equilibrium at 25C? a 2.47 mol b 3.60 mol c 2.52 mol d 2.10 mol e 2.41 molarrow_forward
- The decomposition of NH4HS, NH 4 HS( s )NH3( g )+ H 2 S( g ) is an endothermic process. Using Le Chatelier's principle, explain how increasing the temperature would affect the equilibrium. If more NH4HS is added to a flask in which this equilibrium exists, how is the equilibrium affected? What if some additional NH3 is placed in the flask? What will happen to the pressure of NH3 if some H2S is removed from the flask?arrow_forwardThe decomposition of PCl5(g) to form PCl3(g) and Cl2(g) has Kc = 33.3 at a high temperature. If the initial concentration of PCl5 is 0.1000 M, what are the equilibrium concentrations of the reactants and products?arrow_forward1’he reaction in Exercise 12.33 was repeated. This time, the reaction began when only NO was injected into the reaction container. 110.200 mol L_l NO was injected, what were the equilibrium concentrations of all species? The following reaction establishes equilibrium at 2000 K: N2(g) + O2(g) ^2 NO K = 4.1 X 10~4 If the reaction began with 0.100 mol L-1 of N2 and 0.100 mol L"' ofO2, what were the equilibrium concentrations of all species?arrow_forward
- Consider the following system: 4NH3(g)+3O2(g)2N2(g)+6H2O(l)H=153.04kJ (a) How will the amount of ammonia at equilibrium be affected by (1) removing O2(g) ? (2) adding N2(g)? (3) adding water N2(g) ? (4) expanding the container at constant pressure? (5) increasing the temperature? (b) Which of the above factors will increase the value of K? Which will decrease it?arrow_forwardFor the reaction N2(g)+3H2(g)2NH3(g) show that Kc = Kp(RT)2 Do not use the formula Kp = Kc(RT)5n given in the text. Start from the fact that Pi = [i]RT, where Pi is the partial pressure of substance i and [i] is its molar concentration. Substitute into Kc.arrow_forwardAt room temperature, the equilibrium constant Kc for the reaction 2 NO(g) ⇌ N2(g) + O2(g) is 1.4 × 1030. Is this reaction product-favored or reactant-favored? Explain your answer. In the atmosphere at room temperature the concentration of N2 is 0.33 mol/L, and the concentration of O2 is about 25% of that value. Calculate the equilibrium concentration of NO in the atmosphere produced by the reaction of N2 and O2. How does this affect your answer to Question 11?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning