Chemical Equilibrium I Part 1: You run the chemical reaction C ( a q ) + D ( a q ) ⇌ 2E ( a q ) at 25°C. The equilibrium constant K c for the reaction at this temperature is 2.0. a Write the equilibrium-constant expression for the reaction. b Can you come up with some possible concentrations of C, D, and E that you might observe when the reaction has reached equilibrium at 25°C? What are these values? c A student says that only a very limited number of concentrations for C, D, and E are possible at equilibrium. Is this true? State why you think this is true or is not true. d If you start with 1.0 M concentrations of both C and D and allow the reaction to come to equilibrium, would you expect the concentration of C to have decreased to zero? If not, what would you expect for the concentration of C? (An approximate value is fine.) Part 2: Consider the reaction A ( a q ) ⇌ F ( a q ) + G ( a q ) , whose equilibrium constant is 1.0 × 10 −5 at 20°C. For each of the situations described below, indicate whether any reaction occurs. If reaction does occur, then indicate the direction of that reaction and describe how the concentrations of A, B, F, and G change during this reaction. a A( aq ) and B( aq ) are mixed together in a container. b F( aq ) and G( aq ) are mixed together in a container. c A( aq ) and F( aq ) are mixed together in a container. d B( aq ) and G( aq ) are mixed together in a container. e Just B( aq ) is placed into a container. f Just G( aq ) is placed into a container. Consider any one of these situations in which a reaction does occur. At equilibrium, does the reaction mixture have appreciably more products than reactants? If not, how would you describe the equilibrium composition of the reaction mixture? How did you arrive at this answer?
Chemical Equilibrium I Part 1: You run the chemical reaction C ( a q ) + D ( a q ) ⇌ 2E ( a q ) at 25°C. The equilibrium constant K c for the reaction at this temperature is 2.0. a Write the equilibrium-constant expression for the reaction. b Can you come up with some possible concentrations of C, D, and E that you might observe when the reaction has reached equilibrium at 25°C? What are these values? c A student says that only a very limited number of concentrations for C, D, and E are possible at equilibrium. Is this true? State why you think this is true or is not true. d If you start with 1.0 M concentrations of both C and D and allow the reaction to come to equilibrium, would you expect the concentration of C to have decreased to zero? If not, what would you expect for the concentration of C? (An approximate value is fine.) Part 2: Consider the reaction A ( a q ) ⇌ F ( a q ) + G ( a q ) , whose equilibrium constant is 1.0 × 10 −5 at 20°C. For each of the situations described below, indicate whether any reaction occurs. If reaction does occur, then indicate the direction of that reaction and describe how the concentrations of A, B, F, and G change during this reaction. a A( aq ) and B( aq ) are mixed together in a container. b F( aq ) and G( aq ) are mixed together in a container. c A( aq ) and F( aq ) are mixed together in a container. d B( aq ) and G( aq ) are mixed together in a container. e Just B( aq ) is placed into a container. f Just G( aq ) is placed into a container. Consider any one of these situations in which a reaction does occur. At equilibrium, does the reaction mixture have appreciably more products than reactants? If not, how would you describe the equilibrium composition of the reaction mixture? How did you arrive at this answer?
Solution Summary: The author explains the expression for the equilibrium constant for a given reaction and the initial and equilibrium compositions of the reactants and products.
Part 1: You run the chemical reaction
C
(
a
q
)
+
D
(
a
q
)
⇌
2E
(
a
q
)
at 25°C. The equilibrium constant Kc for the reaction at this temperature is 2.0.
a Write the equilibrium-constant expression for the reaction.
b Can you come up with some possible concentrations of C, D, and E that you might observe when the reaction has reached equilibrium at 25°C? What are these values?
c A student says that only a very limited number of concentrations for C, D, and E are possible at equilibrium. Is this true? State why you think this is true or is not true.
d If you start with 1.0 M concentrations of both C and D and allow the reaction to come to equilibrium, would you expect the concentration of C to have decreased to zero? If not, what would you expect for the concentration of C? (An approximate value is fine.)
Part 2: Consider the reaction
A
(
a
q
)
⇌
F
(
a
q
)
+
G
(
a
q
)
, whose equilibrium constant is 1.0 × 10−5 at 20°C. For each of the situations described below, indicate whether any reaction occurs. If reaction does occur, then indicate the direction of that reaction and describe how the concentrations of A, B, F, and G change during this reaction.
a A(aq) and B(aq) are mixed together in a container.
b F(aq) and G(aq) are mixed together in a container.
c A(aq) and F(aq) are mixed together in a container.
d B(aq) and G(aq) are mixed together in a container.
e Just B(aq) is placed into a container.
f Just G(aq) is placed into a container.
Consider any one of these situations in which a reaction does occur. At equilibrium, does the reaction mixture have appreciably more products than reactants? If not, how would you describe the equilibrium composition of the reaction mixture? How did you arrive at this answer?
Definition Definition State where the components involved in a reversible reaction, namely reactants and product, do not change concentration any further with time. Chemical equilibrium results when the rate of the forward reaction becomes equal to the rate of the reverse reaction.
This organic molecule is dissolved in a basic aqueous solution:
O
?
olo
RET
A short time later sensitive infrared spectroscopy reveals the presence of a new C-OH stretch absorption. That is, there Ar
must now be a new molecule present with at least one C - OH bond.
In the drawing area below, show the detailed mechanism that could convert the molecule above into the new molecule.
$
Add/Remove step
So the thing is im trying to memorize VESPR Shapes in order to be able to solve problems like so, and I need help with making circles like the second image that's in blue or using an x and y axis plane in order to memorize these and be able to solve those type of problems. Especially like the ones given in the top / first image. (180 , 120 , 109.5) Can you help me with this.
Don't used hand raiting and don't used Ai solution
Chapter 14 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.