VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
12th Edition
ISBN: 9781260916942
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 14.111RP
A 6000-kg dump truck has a 1500-kg stone block sitting in its bed when the operator accidently raises the bed to an angle of 30°. At this angle, the cables holding the block in place break, so the block slides down the bed and impacts the tailgate. Neglecting friction between the block and the bed and assuming the truck can roll freely, determine the speed of the truck and the block (a) immediately before the block hits the tailgate, (b) immediately after the block hits the tailgate. Assume a plastic impact.
Fig. P14.111
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 2600-lb car is moving at a speed of 66 mph when the brakes are fully applied, causing all four wheels to skid. Determine the time required to stop the automobile on a rough road, where the coefficient of kinetic friction is equal to 0.60.
A 35 000-Mg ocean liner has an initial velocity of 4 km/h. Neglecting the frictional resistance of the water, determine the time required to bring the liner to rest by using a single tugboat that exerts a constant force of 150 kN.
A 35,000 Mg ocean liner has an initial velocity of 4 km/h. Neglecting the frictional resistance of the water,
determine the time required to bring the liner to rest by using a single tugboat which exerts a constant force of
150 kN.
Chapter 14 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - An airline employee tosses two suitcases in rapid...Ch. 14.1 - Car A weighing 4000 lb and car B weighing 3700 lb...Ch. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9, assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - Prob. 14.16PCh. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - 14.19 and 14.20 Cruiser A was traveling east at 60...Ch. 14.1 - 14.19 and 14.20 Cruiser A was traveling east at 60...Ch. 14.1 - Prob. 14.21PCh. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - In a game of pool, ball A is moving with a...Ch. 14.1 - Prob. 14.24PCh. 14.1 - Prob. 14.25PCh. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation HO=rmv+HG between the angular...Ch. 14.1 - Prob. 14.28PCh. 14.1 - Prob. 14.29PCh. 14.1 - Show that the relation MA=HA, where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - In Prob. 14.3, determine the energy lost (a) when...Ch. 14.2 - Prob. 14.33PCh. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Prob. 14.35PCh. 14.2 - Prob. 14.36PCh. 14.2 - Prob. 14.37PCh. 14.2 - Ball B is suspended from a cord of length l...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - Prob. 14.41PCh. 14.2 - 14.41 and 14.42 In a game of pool, ball A is...Ch. 14.2 - Prob. 14.43PCh. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - Prob. 14.45PCh. 14.2 - Prob. 14.46PCh. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Three identical small spheres, each weighing 2 lb,...Ch. 14.2 - Three small spheres A, B, and C, each of mass m,...Ch. 14.2 - Prob. 14.51PCh. 14.2 - Prob. 14.52PCh. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.2 - Prob. 14.56PCh. 14.3 - A stream of water with a density of = 1000 kg/m3...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - Prob. 14.60PCh. 14.3 - Prob. 14.61PCh. 14.3 - Prob. 14.62PCh. 14.3 - Prob. 14.63PCh. 14.3 - Prob. 14.64PCh. 14.3 - Prob. 14.65PCh. 14.3 - Prob. 14.66PCh. 14.3 - Prob. 14.67PCh. 14.3 - Prob. 14.68PCh. 14.3 - Prob. 14.69PCh. 14.3 - Prob. 14.70PCh. 14.3 - Prob. 14.71PCh. 14.3 - Prob. 14.72PCh. 14.3 - Prob. 14.73PCh. 14.3 - Prob. 14.74PCh. 14.3 - Prob. 14.75PCh. 14.3 - Prob. 14.76PCh. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - Prob. 14.78PCh. 14.3 - Prob. 14.79PCh. 14.3 - Prob. 14.80PCh. 14.3 - Prob. 14.81PCh. 14.3 - Prob. 14.82PCh. 14.3 - Prob. 14.83PCh. 14.3 - Prob. 14.84PCh. 14.3 - Prob. 14.85PCh. 14.3 - Prob. 14.86PCh. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - Prob. 14.88PCh. 14.3 - Prob. 14.89PCh. 14.3 - Prob. 14.90PCh. 14.3 - Prob. 14.91PCh. 14.3 - Prob. 14.92PCh. 14.3 - A rocket sled burns fuel at the constant rate of...Ch. 14.3 - Prob. 14.94PCh. 14.3 - Prob. 14.95PCh. 14.3 - Prob. 14.96PCh. 14.3 - Prob. 14.97PCh. 14.3 - Prob. 14.98PCh. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb, including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - Prob. 14.102PCh. 14.3 - Prob. 14.103PCh. 14.3 - Prob. 14.104PCh. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 50-kg mother and her 26-kg son are sledding down...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - Prob. 14.108RPCh. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - Prob. 14.110RPCh. 14 - A 6000-kg dump truck has a 1500-kg stone block...Ch. 14 - For the ceiling-mounted fan shown, determine the...Ch. 14 - Prob. 14.113RPCh. 14 - Prob. 14.114RPCh. 14 - Prob. 14.115RPCh. 14 - A chain of length l and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- D A block of mass M is at rest on a ramp that is inclined at an angle 0 with respect to the horizontal. Frictional forces are considered to be nonnegligible. The block is pushed against a spring and then held in place. The spring is compressed a distance of x1, and the spring is not sec after traveling a distance D, as shown above. Which of the following claims correctly describes the energy of the system under consideration from when the block compressed the spring and when the block has traveled a distance D along the incline? Select to the block. The block is then released from rest, travels up the incline, and comes to rest two answers. A The mechanical energy of the system consisting of the spring increases by kx7. The mechanical energy of the system consisting of the block does not change. The mechanical energy of the system consisting of the block and Earth increases by more than zero but less than ka?. The mechanical energy of the system consisting of the spring, block, and…arrow_forwardThe overworked Amazon delivery person is driving up a steep hill with an incline of 26° when a box they forgot to secure starts sliding toward the back of the truck. The 3.5 kg box starts from rest near the drivers seat and slides 2.1 m along the floor to the rear door. The coefficient of kinetic friction between the box and the floor is 0.36. What is the work done by the weight of the box? Wmg What is the work done by the Normal Force? WN What is the work done by the frictional force? Wf = = = J What is the net work done on the box? Wnet = What the change in kinetic energy for the box? AKE = How fast is the box moving just before it hits the rear door? Vfinal = Sarrow_forwardA 10-lb bock is resting on an inclined surface at an angle of 30°, as shown. The block is in contact with a compressed spring that has a modulus of 75lb/in. The spring has an initial compression of 6 inches that is released by cutting the restraining cords. If the coefficient of kinetic friction between the inclined surface and the block is 0.15, determine the speed of the block as it leaves the spring. Position B L. Position A Position C 6 in, Restraining cords ww. H = 0.15 k = 75 lb/in 30°arrow_forward
- During the filming of an adventure movie, the 55.0-kg heroine makes a flying leap, grabbing her 70.0-kg partner as he stands on the edge of a building. The building is 20.0 m high, and after the collision the pair fall together of the building with an initial velocity that is horizontal. In the stunt, the pair are to fall into a swimming pool below. The near edge of the pool is 3.00 m from the wall of the building and the far edge is 15.0 m from the wall. a. What speed must the heroine (before collision) have in order for the pair to land in the center of the pool? b. lsWhat are the limits of her speed (before collision) resulting in a reasonably safe landing (1.00 m from either edge)? (a) (b) | 目 # 曲arrow_forwardDetermine the maximum theoretical speed that a 1225 kg automobile starting from rest can reach after traveling 400 m if air resistance is considered. Assume that the coefficient of static friction between the tires and the pavement is 0.70, that the automobile has front-wheel drive, that the front wheels support 62 percent of the automobile's weight, and that the aerodynamic drag D has a magnitude D = 0.575v?, where D and v are expressed in newtons and m/s, respectively.arrow_forwardA 4-kg collar A is at rest on a spring with stiffness k1 = 310 N/m, but the spring is not connected to the collar, when a force F of 220 N is applied to the cable. Knowing that A has a speed of 0.5 m/s when the upper spring is compressed 75 mm, determine the stiffness k2, in N/m ignore friction and pulley mass 450 mm peper 75 mm - 400 mm- Farrow_forward
- 1.25 m 1.25 m A ballistic pendulum consists of 7-kg wooden block originally at rest. When a 4-g bullet strikes and becomes embedded in it, it is observed that the block swing upward to an angle 11°. Determine the initial speed of the bulletarrow_forwardA series of small packages, each with a mass of 0.5 kg, are discharged from a conveyor belt as shown. Knowing that the coefficient of static friction between each package and the conveyor belt is 0.4, determine (a) the force exerted by the belt on the package just after it has passed point A, (b) the angle 0 defining the point B where the packages first slip relative to the belt.arrow_forwardA 10-kg package drops from a chute into a 25-kg cart with a velocity of 3 m/s. The cart is initially at rest and can roll freely. Determine (a) the final velocity of the cart, (b) the impulse exerted by the cart on the package, (c) the fraction of the initial energy lost in the impact.arrow_forward
- 4. The two blocks are released from rest when r = 1.0 m and 0 = 30°. Neglecting the mass of the pulley and the effect of friction in the pulley and between block A and the horizontal surface, determine (a) the initial tension in the cable, (b) the initial acceleration of block A, (c) the initial acceleration of block B. A 40 kg B 50 kgarrow_forwardCar A of mass 1800 kg and car B of mass 1700 kg are at rest on a 20-Mg flatcar which is also at rest. Cars A and B then accelerate and quickly reach constant speeds relative to the flatcar of 2.35 m/s and 1.175 m/s, respectively, before decelerating to a stop at the opposite end of the flatcar. Neglecting friction and rolling resistance, determine the velocity of the flatcar when the cars are moving at constant speeds.arrow_forwardAn airline employee tosses two suitcases with weights of 30 lb and 40 lb, respectively, onto a 50-lb baggage carrier in rapid succession. Knowing that the carrier is initially at rest and that the employee imparts a 9-ft/s horizontal velocity to the 30-lb suitcase and a 6-ft/s horizontal velocity to the 40-lb suitcase, determine the final velocity of the baggage carrier if the first suitcase tossed onto the carrier is (a) the 30-lb suitcase, (b) the 40-lb suitcase.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License